1,576 research outputs found
Next-To-Leading Order Determination of Fragmentation Functions
We analyse LEP and PETRA data on single inclusive charged hadron
cross-sections to establish new sets of Next-to-Leading order Fragmentation
Functions. Data on hadro-production of large- hadrons are also used
to constrain the gluon Fragmentation Function. We carry out a critical
comparison with other NLO parametrizations
Resonant excitonic emission of a single quantum dot in the Rabi regime
We report on coherent resonant emission of the fundamental exciton state in a
single semiconductor GaAs quantum dot. Resonant regime with picoseconde laser
excitation is realized by embedding the quantum dots in a waveguiding
structure. As the pulse intensity is increased, Rabi oscillation is observed up
to three periods. The Rabi regime is achieved owing to an enhanced light-matter
coupling in the waveguide. This is due to a \emph{slow light effect}
(), occuring when an intense resonant pulse propagates in a
medium. The resonant control of the quantum dot fundamental transition opens
new possibilities in quantum state manipulation and quantum optics experiments
in condensed matter physics.Comment: Submitted to Phys. Rev. Let
Penetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities
Cratering experiments have been conducted with 0.5-mm diameter AISI 52100 steel spherical projectiles and 30-mm diameter, 15-mm long graphite targets. The latter were made of a commercial grade of polycrystalline and porous graphite named EDM3 whose behavior is known as macroscopically isotropic. A two-stage light-gas gun launched the steel projectiles at velocities between 1.1 and 4.5 km s 1. In most cases, post-mortem tomographies revealed that the projectile was trapped, fragmented or not, inside the target. It showed that the apparent crater size and depth increase with the impact velocity. This is also the case of the crater volume which appears to follow a power law significantly different from those constructed in previous works for similar impact conditions and materials. Meanwhile, the projectile depth of penetration starts to decrease at velocities beyond 2.2 km s 1. This is firstly because of its plastic deformation and then, beyond 3.2 km s 1, because of its fragmentation. In addition to these three regimes of penetration behavior already described by a few authors, we suggest a fourth regime in which the projectile melting plays a significant role at velocities above 4.1 km s 1. A discussion of these four regimes is provided and indicates that each phenomenon may account for the local evolution of the depth of penetration
Polarization measurements analysis II. Best estimators of polarization fraction and angle
With the forthcoming release of high precision polarization measurements,
such as from the Planck satellite, it becomes critical to evaluate the
performance of estimators for the polarization fraction and angle. These two
physical quantities suffer from a well-known bias in the presence of
measurement noise, as has been described in part I of this series. In this
paper, part II of the series, we explore the extent to which various estimators
may correct the bias. Traditional frequentist estimators of the polarization
fraction are compared with two recent estimators: one inspired by a Bayesian
analysis and a second following an asymptotic method. We investigate the
sensitivity of these estimators to the asymmetry of the covariance matrix which
may vary over large datasets. We present for the first time a comparison among
polarization angle estimators, and evaluate the statistical bias on the angle
that appears when the covariance matrix exhibits effective ellipticity. We also
address the question of the accuracy of the polarization fraction and angle
uncertainty estimators. The methods linked to the credible intervals and to the
variance estimates are tested against the robust confidence interval method.
From this pool of estimators, we build recipes adapted to different use-cases:
build a mask, compute large maps, and deal with low S/N data. More generally,
we show that the traditional estimators suffer from discontinuous distributions
at low S/N, while the asymptotic and Bayesian methods do not. Attention is
given to the shape of the output distribution of the estimators, and is
compared with a Gaussian. In this regard, the new asymptotic method presents
the best performance, while the Bayesian output distribution is shown to be
strongly asymmetric with a sharp cut at low S/N.Finally, we present an
optimization of the estimator derived from the Bayesian analysis using adapted
priors
Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium
We compare the performance of several dust models in reproducing the dust
spectral energy distribution (SED) per unit extinction in the diffuse
interstellar medium (ISM). We use our results to constrain the variability of
the optical properties of big grains in the diffuse ISM, as published by the
Planck collaboration.
We use two different techniques to compare the predictions of dust models to
data from the Planck HFI, IRAS and SDSS surveys. First, we fit the far-infrared
emission spectrum to recover the dust extinction and the intensity of the
interstellar radiation field (ISRF). Second, we infer the ISRF intensity from
the total power emitted by dust per unit extinction, and then predict the
emission spectrum. In both cases, we test the ability of the models to
reproduce dust emission and extinction at the same time.
We identify two issues. Not all models can reproduce the average dust
emission per unit extinction: there are differences of up to a factor
between models, and the best accord between model and observation is obtained
with the more emissive grains derived from recent laboratory data on silicates
and amorphous carbons. All models fail to reproduce the variations in the
emission per unit extinction if the only variable parameter is the ISRF
intensity: this confirms that the optical properties of dust are indeed
variable in the diffuse ISM.
Diffuse ISM observations are consistent with a scenario where both ISRF
intensity and dust optical properties vary. The ratio of the far-infrared
opacity to the band extinction cross-section presents variations of the
order of ( in extreme cases), while ISRF intensity varies
by ( in extreme cases). This must be accounted for in
future modelling.Comment: A&A, in pres
Photon - Jet Correlations and Constraints on Fragmentation Functions
We study the production of a large-pT photon in association with a jet in
proton-proton collisions. We examine the sensitivity of the jet rapidity
distribution to the gluon distribution function in the proton. We then assess
the sensitivity of various photon + jet correlation observables to the photon
fragmentation functions. We argue that RHIC data on photon-jet correlations can
be used to constrain the photon fragmentation functions in a region which was
barely accessible in LEP experiments.Comment: 23 pages, 9 figure
H2 reformation in post-shock regions
H2 formation is an important process in post-shock regions, since H2 is an
active participant in the cooling and shielding of the environment. The onset
of H2 formation therefore has a strong effect on the temperature and chemical
evolution in the post shock regions. We recently developed a model for H2
formation on a graphite surface in warm conditions. The graphite surface acts
as a model system for grains containing large areas of polycyclic aromatic
hydrocarbon structures. Here this model is used to obtain a new description of
the H2 formation rate as a function of gas temperature that can be implemented
in molecular shock models. The H2 formation rate is substantially higher at
high gas temperatures as compared to the original implementation of this rate
in shock models, because of the introduction of H atoms which are chemically
bonded to the grain (chemisorption). Since H2 plays such a key role in the
cooling, the increased rate is found to have a substantial effect on the
predicted line fluxes of an important coolant in dissociative shocks [O I] at
63.2 and 145.5 micron. With the new model a better agreement between model and
observations is obtained. Since one of the goals of Herschel/PACS will be to
observe these lines with higher spatial resolution and sensitivity than the
former observations by ISO-LWS, this more accurate model is very timely to help
with the interpretation of these future results.Comment: 12 pages, 3 figures, 1 table, accepted in MNRAS Letter
Dynamic cratering of graphite : experimental results and simulations
The cratering process in brittle materials under hypervelocity impact (HVI) is of major relevance for debris shielding in spacecraft or high-power laser applications. Amongst other materials, carbon is of particular interest since it is widely used as elementary component in composite materials. In this paper we study a porous polycrystalline graphite under HVI and laser impact, both leading to strong debris ejection and cratering. First, we report new experimental data for normal impacts at 4100 and 4200 m s-1 of a 500-μm-diameter steel sphere on a thick sample of graphite. In a second step, dynamic loadings have been performed with a high-power nanosecond laser facility. High-resolution X-ray tomographies and observations with a scanning electron microscope have been performed in order to visualize the crater shape and the subsurface cracks. These two post-mortem diagnostics also provide evidence that, in the case of HVI tests, the fragmented steel sphere was buried into the graphite target below the crater surface. The current study aims to propose an interpretation of the results, including projectile trapping. In spite of their efficiency to capture overall trends in crater size and shape, semi-empirical scaling laws do not usually predict these phenomena. Hence, to offer better insight into the processes leading to this observation, the need for a computational damage model is argued. After discussing energy partitioning in order to identify the dominant physical mechanisms occurring in our experiments, we propose a simple damage model for porous and brittle materials. Compaction and fracture phenomena are included in the model. A failure criterion relying on Weibull theory is used to relate material tensile strength to deformation rate and damage. These constitutive relations have been implemented in an Eulerian hydrocode in order to compute numerical simulations and confront them with experiments. In this paper, we propose a simple fitting procedure of the unknown Weibull parameters based on HVI results. Good agreement is found with experimental observations of crater shapes and dimensions, as well as debris velocity. The projectile inclusion below the crater is also reproduced by the model and a mechanism is proposed for the trapping process. At least two sets of Weibull parameters can be used to match the results. Finally, we show that laser experiment simulations may discriminate in favor of one set of parameters
Fabrication and Optical Properties of a Fully Hybrid Epitaxial ZnO-Based Microcavity in the Strong Coupling Regime
In order to achieve polariton lasing at room temperature, a new fabrication
methodology for planar microcavities is proposed: a ZnO-based microcavity in
which the active region is epitaxially grown on an AlGaN/AlN/Si substrate and
in which two dielectric mirrors are used. This approach allows as to
simultaneously obtain a high-quality active layer together with a high photonic
confinement as demonstrated through macro-, and micro-photoluminescence
({\mu}-PL) and reflectivity experiments. A quality factor of 675 and a maximum
PL emission at k=0 are evidenced thanks to {\mu}-PL, revealing an efficient
polaritonic relaxation even at low excitation power.Comment: 12 pages, 3 figure
Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems
The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires
(QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of
different generations of samples shows that the localization length has been
enhanced as the growth techniques were improved. In the best samples, excitons
are delocalized in islands of length of the order of 1 micron, and form a
continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence
of the radiative lifetime. On the opposite, in the previous generation of QWRs,
the localization length is typically 50 nm and the QWR behaves as a collection
of quantum boxes. These localization properties are compared to structural
properties and related to the progresses of the growth techniques. The presence
of residual disorder is evidenced in the best samples and explained by the
separation of electrons and holes due to the large in-built piezo-electric
field present in the structure.Comment: 8 figure
- …
