2,629 research outputs found

    Zero-G Workstation Design

    Get PDF
    Zero-g workstations were designed throughout manned spaceflight, based on different criteria and requirements for different programs. The history of design of these workstations is presented along with a thorough evaluation of selected Skylab workstations (the best zero-g experience available on the subject). The results were applied to on-going and future programs, with special emphasis on the correlation of neutral body posture in zero-g to workstation design. Where selected samples of shuttle orbiter workstations are shown as currently designed and compared to experience gained during prior programs in terms of man machine interface design, the evaluations were done in a generic sense to show the methods of applying evaluative techniques

    COMPASS: a 2.6m telescope for CMBR polarization studies

    Get PDF
    COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented

    Breaking the Redshift Deadlock - I: Constraining the star formation history of galaxies with sub-millimetre photometric redshifts

    Full text link
    Future extragalactic sub-millimetre and millimetre surveys have the potential to provide a sensitive census of the level of obscured star formation in galaxies at all redshifts. While in general there is good agreement between the source counts from existing SCUBA (850um) and MAMBO (1.25mm) surveys of different depths and areas, it remains difficult to determine the redshift distribution and bolometric luminosities of the sub-millimetre and millimetre galaxy population. This is principally due to the ambiguity in identifying an individual sub-millimetre source with its optical, IR or radio counterpart which, in turn, prevents a confident measurement of the spectroscopic redshift. Additionally, the lack of data measuring the rest-frame FIR spectral peak of the sub-millimetre galaxies gives rise to poor constraints on their rest-frame FIR luminosities and star formation rates. In this paper we describe Monte-Carlo simulations of ground-based, balloon-borne and satellite sub-millimetre surveys that demonstrate how the rest-frame FIR-sub-millimetre spectral energy distributions (250-850um) can be used to derive photometric redshifts with an r.m.s accuracy of +/- 0.4 over the range 0 < z < 6. This opportunity to break the redshift deadlock will provide an estimate of the global star formation history for luminous optically-obscured galaxies [L(FIR) > 3 x 10^12 Lsun] with an accuracy of 20 per cent.Comment: 14 pages, 22 figures, submitted to MNRAS, replaced with accepted versio

    CMB anisotropy predictions for a model of double inflation

    Full text link
    We consider a double-inflationary model with two massive scalar fields interacting only gravitationally in the context of a flat cold dark matter (CDM) Universe. The cosmic microwave background (CMB) temperature anisotropies produced in this theory are investigated in great details for a window of parameters where the density fluctuation power spectrum P(k) is in good agreement with observations. The first Doppler (``acoustic'') peak is a crucial test for this model as well as for other models. For the ``standard'' values of the cosmological parameters of CDM, our model is excluded if the height of the Doppler peak is sensibly higher than about three times the Sachs-Wolfe plateau.Comment: 12 pages LaTeX using revtex, to be published in Phys. Rev.

    SANEPIC: A Map-Making Method for Timestream Data From Large Arrays

    Get PDF
    We describe a map-making method which we have developed for the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) experiment, but which should have general application to data from other submillimeter arrays. Our method uses a Maximum Likelihood based approach, with several approximations, which allows images to be constructed using large amounts of data with fairly modest computer memory and processing requirements. This new approach, Signal And Noise Estimation Procedure Including Correlations (SANEPIC), builds upon several previous methods, but focuses specifically on the regime where there is a large number of detectors sampling the same map of the sky, and explicitly allowing for the the possibility of strong correlations between the detector timestreams. We provide real and simulated examples of how well this method performs compared with more simplistic map-makers based on filtering. We discuss two separate implementations of SANEPIC: a brute-force approach, in which the inverse pixel-pixel covariance matrix is computed; and an iterative approach, which is much more efficient for large maps. SANEPIC has been successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related results available at http://blastexperiment.info/ [the BLAST Webpage

    Over half of the far-infrared background light comes from galaxies at z >= 1.2

    Full text link
    Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies. In the redshift range 1 <= z <= 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 microns in the rest frame. At 1 <= z <= 4, the peak is redshifted to wavelengths between 200 and 500 microns. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB), higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 microns. Combining our results at 500 microns with those at 24 microns, we determine that all of the FIRB comes from individual galaxies, with galaxies at z >= 1.2 accounting for 70 per cent of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.Comment: Accepted to Nature. Maps available at http://blastexperiment.info

    Measurements of Anisotropy in the Cosmic Microwave Background Radiation at Degree Angular Scales Near the Stars Sigma Hercules and Iota Draconis

    Get PDF
    We present results from two four-frequency observations centered near the stars Sigma Hercules and Iota Draconis during the fourth flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observations were made of 6 x 0.6-degree strips of the sky with 1.4-degree peak to peak sinusoidal chop in all bands. The FWHM beam sizes were 0.55+/-0.05 degrees at 3.5 cm-1 and a 0.75+/-0.05 degrees at 6, 9, and 14 cm-1. Significant correlated structures were observed at 3.5, 6 and 9 cm-1. The spectra of these signals are inconsistent with thermal emission from known interstellar dust populations. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structures. If the observed structures are attributed to CMB anisotropy with a Gaussian autocorrelation function and a coherence angle of 25', then the most probable values are DT/TCMB = (3.1 +1.7-1.3) x 10^-5 for the Sigma Hercules scan, and DT/TCMB = (3.3 +/- 1.1) x 10^-5 for the Iota Draconis scan (95% confidence upper and lower limits). Finally a comparison of all six MAX scans is presented.Comment: 13 pages, postscript file, 2 figure

    Measurements of Anisotropy in the Cosmic Microwave Background Radiation at 0.5 Degree Angular Scales Near the Star Gamma Ursae Minoris

    Full text link
    We present results from a four frequency observation of a 6 x 0.6 degree strip of the sky centered near the star Gamma Ursae Minoris during the fourth flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observation was made with a 1.4 degree peak-to-peak sinusoidal chop in all bands. The FWHM beam sizes were 0.55 +/- 0.05 degrees at 3.5 cm-1 and 0.75 +/-0.05 degrees at 6, 9, and 14 cm-1. During this observation significant correlated structure was observed at 3.5, 6 and 9 cm-1 with amplitudes similar to those observed in the GUM region during the second and third flights of MAX. The frequency spectrum is consistent with CMB and inconsistent with thermal emission from interstellar dust. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structure. If all of the structure is attributed to CMB anisotropy with a Gaussian autocorrelation function and a coherence angle of 25', then the most probable values of DeltaT/TCMB in the 3.5, 6, and 9 cm-1 bands are 4.3 (+2.7, -1.6) x 10-5, 2.8 (+4.3, -1.1) x 10-5, and 3.5 (+3.0, -1.6) x 10-5 (95% confidence upper and lower limits), respectively.Comment: 16 pages, postscrip

    New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz

    Full text link
    We present new measurements of the cosmic microwave background (CMB) polarization from the final season of the Cosmic Anisotropy Polarization MAPper (CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz) correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After selection criteria were applied, 956 (939) hours of data survived for analysis of W-band (Q-band) data. Two independent and complementary pipelines produced results in excellent agreement with each other. A broad suite of null tests as well as extensive simulations showed that systematic errors were minimal, and a comparison of the W-band and Q-band sky maps revealed no contamination from galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands in the range 200 < l < 3000, extending the range of previous measurements to higher l. The E-mode spectrum, which is detected at 11 sigma significance, is in agreement with cosmological predictions and with previous work at other frequencies and angular resolutions. The BB power spectrum provides one of the best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap
    corecore