279 research outputs found

    Phase structure of matrix quantum mechanics at finite temperature

    Full text link
    We study matrix quantum mechanics at finite temperature by Monte Carlo simulation. The model is obtained by dimensionally reducing 10d U(N) pure Yang-Mills theory to 1d. Following Aharony et al., one can view the same model as describing the high temperature regime of (1+1)d U(N) super Yang-Mills theory on a circle. In this interpretation an analog of the deconfinement transition was conjectured to be a continuation of the black-hole/black-string transition in the dual gravity theory. Our detailed analysis in the critical regime up to N=32 suggests the existence of the non-uniform phase, in which the eigenvalue distribution of the holonomy matrix is non-uniform but gapless. The transition to the gapped phase is of second order. The internal energy is constant (giving the ground state energy) in the uniform phase, and rises quadratically in the non-uniform phase, which implies that the transition between these two phases is of third order.Comment: 17 pages, 9 figures, (v2) refined arguments in section 3 ; reference adde

    Cascade of Gregory-Laflamme Transitions and U(1) Breakdown in Super Yang-Mills

    Full text link
    In this paper we consider black p-branes on square torus. We find an indication of a cascade of Gregory-Laflamme transitions between black p-brane and (p-1)-brane. Through AdS/CFT correspondence, these transitions are related to the breakdown of the U(1) symmetry in super Yang-Mills on torus. We argue a relationship between the cascade and recent Monte-Carlo data.Comment: 15 pages, 3 figures, LaTeX, v2: comments and references added, v3: minor changes and a reference adde

    Matched Asymptotic Expansion for Caged Black Holes - Regularization of the Post-Newtonian Order

    Full text link
    The "dialogue of multipoles" matched asymptotic expansion for small black holes in the presence of compact dimensions is extended to the Post-Newtonian order for arbitrary dimensions. Divergences are identified and are regularized through the matching constants, a method valid to all orders and known as Hadamard's partie finie. It is closely related to "subtraction of self-interaction" and shows similarities with the regularization of quantum field theories. The black hole's mass and tension (and the "black hole Archimedes effect") are obtained explicitly at this order, and a Newtonian derivation for the leading term in the tension is demonstrated. Implications for the phase diagram are analyzed, finding agreement with numerical results and extrapolation shows hints for Sorkin's critical dimension - a dimension where the transition turns second order.Comment: 28 pages, 5 figures. v2:published versio

    Thermodynamics of Large N Gauge Theories with Chemical Potentials in a 1/D Expansion

    Full text link
    In order to understand thermodynamical properties of N D-branes with chemical potentials associated with R-symmetry charges, we study a one dimensional large N gauge theory (bosonic BFSS type model) as a first step. This model is obtained through a dimensional reduction of a 1+D dimensional SU(N) Yang-Mills theory and we use a 1/D expansion to investigate the phase structure. We find three phases in the \mu-T plane. We also show that all the adjoint scalars condense at large D and obtain a mass dynamically. This dynamical mass protects our model from the usual perturbative instability of massless scalars in a non-zero chemical potential. We find that the system is at least meta-stable for arbitrary large values of the chemical potentials in D \to \infty limit. We also explore the existence of similar condensation in higher dimensional gauge theories in a high temperature limit. In 2 and 3 dimensions, the condensation always happens as in one dimensional case. On the other hand, if the dimension is higher than 4, there is a critical chemical potential and the condensation happens only if the chemical potentials are below it.Comment: 37 pages, 4 figures; v2: minor corrections, references added; v3: minor corrections, to appear in JHE

    New Phases of Near-Extremal Branes on a Circle

    Full text link
    We study the phases of near-extremal branes on a circle, by which we mean near-extremal branes of string theory and M-theory with a circle in their transverse space. We find a map that takes any static and neutral Kaluza-Klein black hole, i.e. any static and neutral black hole on Minkowski-space times a circle M^d x S^1, and map it to a corresponding solution for a near-extremal brane on a circle. The map is derived using first a combined boost and U-duality transformation on the Kaluza-Klein black hole, transforming it to a solution for a non-extremal brane on a circle. The resulting solution for a near-extremal brane on a circle is then obtained by taking a certain near-extremal limit. As a consequence of the map, we can transform the neutral non-uniform black string branch into a new non-uniform phase of near-extremal branes on a circle. Furthermore, we use recently obtained analytical results on small black holes in Minkowski-space times a circle to get new information about the localized phase of near-extremal branes on a circle. This gives in turn predictions for the thermal behavior of the non-gravitational theories dual to these near-extremal branes. In particular, we give predictions for the thermodynamics of supersymmetric Yang-Mills theories on a circle, and we find a new stable phase of (2,0) Little String Theory in the canonical ensemble for temperatures above its Hagedorn temperature.Comment: 72 pages, 5 figures. v2: Typos fixed, refs. added. v3: Sec. 3.2 fixe

    Validity of the WKB Approximation in Calculating the Asymptotic Quasinormal Modes of Black Holes

    Full text link
    In this paper, we categorize non-rotating black hole spacetimes based on their pole structure and in each of these categories we determine whether the WKB approximation is a valid approximation for calculating the asymptotic quasinormal modes. We show that Schwarzschild black holes with the Gauss-Bonnet correction belong to the category in which the WKB approximation is invalid for calculating these modes. In this context, we further discuss and clarify some of the ambiguity in the literature surrounding the validity conditions provided for the WKB approximation.Comment: 10 page

    Instabilities of Black Strings and Branes

    Get PDF
    We review recent progress on the instabilities of black strings and branes both for pure Einstein gravity as well as supergravity theories which are relevant for string theory. We focus mainly on Gregory-Laflamme instabilities. In the first part of the review we provide a detailed discussion of the classical gravitational instability of the neutral uniform black string in higher dimensional gravity. The uniform black string is part of a larger phase diagram of Kaluza-Klein black holes which will be discussed thoroughly. This phase diagram exhibits many interesting features including new phases, non-uniqueness and horizon-topology changing transitions. In the second part, we turn to charged black branes in supergravity and show how the Gregory-Laflamme instability of the neutral black string implies via a boost/U-duality map similar instabilities for non- and near-extremal smeared branes in string theory. We also comment on instabilities of D-brane bound states. The connection between classical and thermodynamic stability, known as the correlated stability conjecture, is also reviewed and illustrated with examples. Finally, we examine the holographic implications of the Gregory-Laflamme instability for a number of non-gravitational theories including Yang-Mills theories and Little String Theory.Comment: 119 pages, 16 figures. Invited review for Classical and Quantum Gravit

    Black Holes in Higher-Dimensional Gravity

    Full text link
    These lectures review some of the recent progress in uncovering the phase structure of black hole solutions in higher-dimensional vacuum Einstein gravity. The two classes on which we focus are Kaluza-Klein black holes, i.e. static solutions with an event horizon in asymptotically flat spaces with compact directions, and stationary solutions with an event horizon in asymptotically flat space. Highlights include the recently constructed multi-black hole configurations on the cylinder and thin rotating black rings in dimensions higher than five. The phase diagram that is emerging for each of the two classes will be discussed, including an intriguing connection that relates the phase structure of Kaluza-Klein black holes with that of asymptotically flat rotating black holes.Comment: latex, 49 pages, 5 figures. Lectures to appear in the proceedings of the Fourth Aegean Summer School, Mytiline, Lesvos, Greece, September 17-22, 200

    On the shape of a D-brane bound state and its topology change

    Get PDF
    As is well known, coordinates of D-branes are described by NxN matrices. From generic non-commuting matrices, it is difficult to extract physics, for example, the shape of the distribution of positions of D-branes. To overcome this problem, we generalize and elaborate on a simple prescription, first introduced by Hotta, Nishimura and Tsuchiya, which determines the most appropriate gauge to make the separation between diagonal components (D-brane positions) and off-diagonal components. This prescription makes it possible to extract the distribution of D-branes directly from matrices. We verify the power of it by applying it to Monte-Carlo simulations for various lower dimensional Yang-Mills matrix models. In particular, we detect the topology change of the D-brane bound state for a phase transition of a matrix model; the existence of this phase transition is expected from the gauge/gravity duality, and the pattern of the topology change is strikingly similar to the counterpart in the gravity side, the black hole/black string transition. We also propose a criterion, based on the behavior of the off-diagonal components, which determines when our prescription gives a sensible definition of D-brane positions. We provide numerical evidence that our criterion is satisfied for the typical distance between D-branes. For a supersymmetric model, positions of D-branes can be defined even at a shorter distance scale. The behavior of off-diagonal elements found in this analysis gives some support for previous studies of D-brane bound states.Comment: 29 pages, 16 figure

    Higher-Derivative Corrected Black Holes: Perturbative Stability and Absorption Cross-Section in Heterotic String Theory

    Get PDF
    This work addresses spherically symmetric, static black holes in higher-derivative stringy gravity. We focus on the curvature-squared correction to the Einstein-Hilbert action, present in both heterotic and bosonic string theory. The string theory low-energy effective action necessarily describes both a graviton and a dilaton, and we concentrate on the Callan-Myers-Perry solution in d-dimensions, describing stringy corrections to the Schwarzschild geometry. We develop the perturbation theory for the higher-derivative corrected action, along the guidelines of the Ishibashi-Kodama framework, focusing on tensor type gravitational perturbations. The potential obtained allows us to address the perturbative stability of the black hole solution, where we prove stability in any dimension. The equation describing gravitational perturbations to the Callan-Myers-Perry geometry also allows for a study of greybody factors and quasinormal frequencies. We address gravitational scattering at low frequencies, computing corrections arising from the curvature-squared term in the stringy action. We find that the absorption cross-section receives \alpha' corrections, even though it is still proportional to the area of the black hole event-horizon. We also suggest an expression for the absorption cross-section which could be valid to all orders in \alpha'.Comment: JHEP3.cls, 29 pages; v2: added refs, minor corrections and additions; v3: added more refs, more minor corrections and addition
    corecore