3,532 research outputs found
Behaviour of dairy cows on organic and non-organic farms
There is an increasing number of organic dairy farms in the UK. The aim of this study is to compare behaviour of dairy cows on organic and non-organic farms. Twenty organic and 20 non-organic farms throughout the UK were visited over two winters (2004/05 and 2005/06). Organic and non-organic farms were paired for housing type, herd size, milk production traits and location. The number of cows feeding was counted every fifteen minutes for 4.5 h after new feed was available post morning milking. Behaviour at the feed-face was recorded for 60 minutes and aggressive interactions between cows were quantified. Farm type had no effect on numbers of cows feeding. There were more interactions between cows feeding at open feed-faces compared to head-bale barriers. At open feed-faces, there were more interactions on organic farms than non-organic. It is possible that organic cows were hungrier than non-organic cows after the arrival of new feed
The dynamics of neutron star crusts: Lagrangian perturbation theory for a relativistic superfluid-elastic system
The inner crust of a mature neutron star is composed of an elastic lattice of
neutron-rich nuclei penetrated by free neutrons. These neutrons can flow
relative to the crust once the star cools below the superfluid transition
temperature. In order to model the dynamics of this system, which is relevant
for a range of problems from pulsar glitches to magnetar seismology and
continuous gravitational-wave emission from rotating deformed neutron stars, we
need to understand general relativistic Lagrangian perturbation theory for
elastic matter coupled to a superfluid component. This paper develops the
relevant formalism to the level required for astrophysical applications.Comment: 31 pages, double spacing, minor typos fixe
Dynamical mean-filed approximation to small-world networks of spiking neurons: From local to global, and/or from regular to random couplings
By extending a dynamical mean-field approximation (DMA) previously proposed
by the author [H. Hasegawa, Phys. Rev. E {\bf 67}, 41903 (2003)], we have
developed a semianalytical theory which takes into account a wide range of
couplings in a small-world network. Our network consists of noisy -unit
FitzHugh-Nagumo (FN) neurons with couplings whose average coordination number
may change from local () to global couplings () and/or
whose concentration of random couplings is allowed to vary from regular
() to completely random (p=1). We have taken into account three kinds of
spatial correlations: the on-site correlation, the correlation for a coupled
pair and that for a pair without direct couplings. The original -dimensional {\it stochastic} differential equations are transformed to
13-dimensional {\it deterministic} differential equations expressed in terms of
means, variances and covariances of state variables. The synchronization ratio
and the firing-time precision for an applied single spike have been discussed
as functions of and . Our calculations have shown that with increasing
, the synchronization is {\it worse} because of increased heterogeneous
couplings, although the average network distance becomes shorter. Results
calculated by out theory are in good agreement with those by direct
simulations.Comment: 19 pages, 2 figures: accepted in Phys. Rev. E with minor change
Introductory Physics: Writing scheme teaches science to non-scientists
DOI: 10.1088/0031-9120/42/6/F05 http://iopscience.iop.org/0031-9120/42/6/F05/pdf/0031-9120_42_6_F05.pdfWriting-intensive activities can be made use of to implement a 'narrow-but-deep' approach in an undergraduate introductory physics course for non-science majors. In this approach, a carefully selected number of topics are treated not only in more detail but also with attention to developing
them logically and rigorously. We teach a course that utilizes parts of an interdisciplinary text by Alan Lightman [1] and focuses on three subjects: (i) the conservation of energy, (ii) the second law of thermodynamics and (iii) the special theory of relativity
Oscillatory phase transition and pulse propagation in noisy integrate-and-fire neurons
We study non-locally coupled noisy integrate-and-fire neurons with the
Fokker-Planck equation. A propagating pulse state and a wavy state appear as a
phase transition from an asynchronous state. We also find a solution in which
traveling pulses are emitted periodically from a pacemaker region.Comment: 9 pages, 4 figure
Gravitational waves from rapidly rotating neutron stars
Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed
as an interesting source of gravitational waves. In this chapter we present
estimates of the gravitational wave emission for various scenarios, given the
(electromagnetically) observed characteristics of these systems. First of all
we focus on the r-mode instability and show that a 'minimal' neutron star model
(which does not incorporate exotica in the core, dynamically important magnetic
fields or superfluid degrees of freedom), is not consistent with observations.
We then present estimates of both thermally induced and magnetically sustained
mountains in the crust. In general magnetic mountains are likely to be
detectable only if the buried magnetic field of the star is of the order of
G. In the thermal mountain case we find that gravitational
wave emission from persistent systems may be detected by ground based
interferometers. Finally we re-asses the idea that gravitational wave emission
may be balancing the accretion torque in these systems, and show that in most
cases the disc/magnetosphere interaction can account for the observed spin
periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the
Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert
The dynamics of dissipative multi-fluid neutron star cores
We present a Newtonian multi-fluid formalism for superfluid neutron star
cores, focussing on the additional dissipative terms that arise when one takes
into account the individual dynamical degrees of freedom associated with the
coupled "fluids". The problem is of direct astrophysical interest as the nature
of the dissipative terms can have significant impact on the damping of the
various oscillation modes of the star and the associated gravitational-wave
signatures. A particularly interesting application concerns the
gravitational-wave driven instability of f- and r-modes. We apply the developed
formalism to two specific three-fluid systems: (i) a hyperon core in which both
Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks
in the colour-flavour-locked phase in which a population of neutral K^0 kaons
is present. The formalism is, however, general and can be applied to other
problems in neutron-star dynamics (such as the effect of thermal excitations
close to the superfluid transition temperature) as well as laboratory
multi-fluid systems.Comment: RevTex, no figure
Structure and deformations of strongly magnetized neutron stars with twisted torus configurations
We construct general relativistic models of stationary, strongly magnetized
neutron stars. The magnetic field configuration, obtained by solving the
relativistic Grad-Shafranov equation, is a generalization of the twisted torus
model recently proposed in the literature; the stellar deformations induced by
the magnetic field are computed by solving the perturbed Einstein's equations;
stellar matter is modeled using realistic equations of state. We find that in
these configurations the poloidal field dominates over the toroidal field and
that, if the magnetic field is sufficiently strong during the first phases of
the stellar life, it can produce large deformations.Comment: 10 pages, 5 figures. Minor changes to match the version published on
MNRA
Generalized Rate-Code Model for Neuron Ensembles with Finite Populations
We have proposed a generalized Langevin-type rate-code model subjected to
multiplicative noise, in order to study stationary and dynamical properties of
an ensemble containing {\it finite} neurons. Calculations using the
Fokker-Planck equation (FPE) have shown that owing to the multiplicative noise,
our rate model yields various kinds of stationary non-Gaussian distributions
such as gamma, inverse-Gaussian-like and log-normal-like distributions, which
have been experimentally observed. Dynamical properties of the rate model have
been studied with the use of the augmented moment method (AMM), which was
previously proposed by the author with a macroscopic point of view for
finite-unit stochastic systems. In the AMM, original -dimensional stochastic
differential equations (DEs) are transformed into three-dimensional
deterministic DEs for means and fluctuations of local and global variables.
Dynamical responses of the neuron ensemble to pulse and sinusoidal inputs
calculated by the AMM are in good agreement with those obtained by direct
simulation. The synchronization in the neuronal ensemble is discussed.
Variabilities of the firing rate and of the interspike interval (ISI) are shown
to increase with increasing the magnitude of multiplicative noise, which may be
a conceivable origin of the observed large variability in cortical neurons.Comment: 19 pages, 9 figures, accepted in Phys. Rev. E after minor
modification
Political Competency: Understanding How College Students Develop Their Political Identity
Constructing models of how students come to understand their identity is a hallmark of student development theory. Yet, there is little published research or institutional attention devoted to the examination of students’ political identity development. In this article, the authors apply existing student development theories to this topic and describe ways that student affairs practitioners can facilitate student growth in this important dimension of adulthood
- …
