21,657 research outputs found
Comparison of liquid-metal magnetohydrodynamic power conversion cycles
Comparison of liquid metal magnetohydrodynamic power conversion cycle
Density Functional Calculations On First-Row Transition Metals
The excitation energies and ionization potentials of the atoms in the first
transition series are notoriously difficult to compute accurately. Errors in
calculated excitation energies can range from 1--4 eV at the Hartree-Fock
level, and errors as high as 1.5eV are encountered for ionization energies. In
the current work we present and discuss the results of a systematic study of
the first transition series using a spin-restricted Kohn-Sham
density-functional method with the gradient-corrected functionals of Becke and
Lee, Yang and Parr. Ionization energies are observed to be in good agreement
with experiment, with a mean absolute error of approximately 0.15eV; these
results are comparable to the most accurate calculations to date, the Quadratic
Configuration Interaction (QCISD(T)) calculations of Raghavachari and Trucks.
Excitation energies are calculated with a mean error of approximately 0.5eV,
compared with \sim 1\mbox{eV} for the local density approximation and 0.1eV
for QCISD(T). These gradient-corrected functionals appear to offer an
attractive compromise between accuracy and computational effort.Comment: Journal of Chemical Physics, 29, LA-UR-93-425
Recommended from our members
The Demoiselles d'Evanston: On the Aesthetics of the Wigmore Chart
Wigmore's ‘The Problem of Proof’, published in 1913, was a path-breaking attempt to systematize the process of drawing inferences from trial evidence. In this paper, written for a conference on visual approaches to evidence, I look at the Wigmore article in relation to cubist art, which coincidentally made its American debut in New York and Chicago the same spring that the article appeared. The point of the paper is to encourage greater attention to the complex meanings embedded in visual diagrams, meanings overlooked by the prevailing cognitive scientific approaches to the Wigmore method
- …
