11,191 research outputs found
Precession during merger 1: Strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger
The short gravitational wave signal from the merger of compact binaries
encodes a surprising amount of information about the strong-field dynamics of
merger into frequencies accessible to ground-based interferometers. In this
paper we describe a previously-unknown "precession" of the peak emission
direction with time, both before and after the merger, about the total angular
momentum direction. We demonstrate the gravitational wave polarization encodes
the orientation of this direction to the line of sight. We argue the effects of
polarization can be estimated nonparametrically, directly from the
gravitational wave signal as seen along one line of sight, as a slowly-varying
feature on top of a rapidly-varying carrier. After merger, our results can be
interpreted as a coherent excitation of quasinormal modes of different angular
orders, a superposition which naturally "precesses" and modulates the
line-of-sight amplitude. Recent analytic calculations have arrived at a similar
geometric interpretation. We suspect the line-of-sight polarization content
will be a convenient observable with which to define new high-precision tests
of general relativity using gravitational waves. Additionally, as the nonlinear
merger process seeds the initial coherent perturbation, we speculate the
amplitude of this effect provides a new probe of the strong-field dynamics
during merger. To demonstrate the ubiquity of the effects we describe, we
summarize the post-merger evolution of 104 generic precessing binary mergers.
Finally, we provide estimates for the detectable impacts of precession on the
waveforms from high-mass sources. These expressions may identify new precessing
binary parameters whose waveforms are dissimilar from the existing sample.Comment: 11 figures; v2 includes response to referee suggestion
On the interactions between molecules in an off-resonant laser beam:Evaluating the response to energy migration and optically induced pair forces
Electronically excited molecules interact with their neighbors differently from their ground-state counterparts. Any migration of the excitation between molecules can modify intermolecular forces, reflecting changes to a local potential energy landscape. It emerges that throughput off-resonant radiation can also produce significant additional effects. The context for the present analysis of the mechanisms is a range of chemical and physical processes that fundamentally depend on intermolecular interactions resulting from second and fourth-order electric-dipole couplings. The most familiar are static dipole-dipole interactions, resonance energy transfer (both second-order interactions), and dispersion forces (fourth order). For neighboring molecules subjected to off-resonant light, additional forms of intermolecular interaction arise in the fourth order, including radiation-induced energy transfer and optical binding. Here, in a quantum electrodynamical formulation, these phenomena are cast in a unified description that establishes their inter-relationship and connectivity at a fundamental level. Theory is then developed for systems in which the interplay of these forms of interaction can be readily identified and analyzed in terms of dynamical behavior. The results are potentially significant in Förster measurements of conformational change and in the operation of microelectromechanical and nanoelectromechanical devices. © 2009 American Institute of Physics
Tunable coaxial resonators based on silicon optical fibers
Thermal tuning of a coaxial fiber resonator with a silica cladding surrounding an inner silicon core is investigated. By pumping the silicon with below bandgap light, it is possible to redshift the WGM resonances
Speech perception in MRI scanner noise by persons with aphasia
Purpose. To examine reductions in performance on auditory tasks by aphasic and neurologically-intact individuals as a result of concomitant MRI scanner noise. Methods. Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same/different discrimination of minimal pair syllables, lexical decision, and sentence plausibility. Each task was performed by persons with aphasia (PWA) and by controls. The stimuli were presented in silence and also in the noise recorded from within the bore of a 3T MRI scanner at three signal-to-noise ratios (S/Ns). Results. Across the four tasks, the PWA scored lower than the controls and performance fell as a function of decreased S/N. However, the rate at which performance fell was not different across the two listener groups in any task. Conclusions. Depending upon the relative levels of the signals and noise, the intense noise accompanying MRI scanning has the potential to severely disrupt performance. However, PWA are no more susceptible to the disruptive influence of this noise than are unimpaired individuals usually employed as controls. Thus, fMRI data from aphasic and control individuals may be interpreted without complications associated with large interactions between scanner noise and performance reduction
Towards in-fiber silicon photonics
The state of the art of silicon optical fibers fabricated via the high pressure chemical deposition technique will be reviewed. The optical transmission properties of step index silicon optical fibers will be presented, including investigations of the nonlinearities that can be used for all-optical signal processing. In addition, alternative complex fiber geometries that permit sophisticated control of the propagating light will be introduced
Three-dimensional rotational averages in radiation-molecule interactions: an irreducible cartesian tensor formulation
Transformative treatments
Contemporary social-scientific research seeks to identify specific causal mechanisms for outcomes of theoretical interest. Experiments that randomize populations to treatment and control conditions are the “gold standard” for causal inference. We identify, describe, and analyze the problem posed by transformative treatments. Such treatments radically change treated individuals in a way that creates a mismatch in populations, but this mismatch is not empirically detectable at the level of counterfactual dependence. In such cases, the identification of causal pathways is underdetermined in a previously unrecognized way. Moreover, if the treatment is indeed transformative it breaks the inferential structure of the experimental design. Transformative treatments are not curiosities or “corner cases,” but are plausible mechanisms in a large class of events of theoretical interest, particularly ones where deliberate randomization is impractical and quasi-experimental designs are sought instead. They cast long-running debates about treatment and selection effects in a new light, and raise new methodological challenges.PostprintPeer reviewe
Directed polymers in random media under confining force
The scaling behavior of a directed polymer in a two-dimensional (2D) random
potential under confining force is investigated. The energy of a polymer with
configuration is given by H\big(\{y(x)\}\big) = \sum_{x=1}^N \exyx
+ \epsilon \Wa^\alpha, where is an uncorrelated random potential
and \Wa is the width of the polymer. Using an energy argument, it is
conjectured that the radius of gyration and the energy fluctuation
of the polymer of length in the ground state increase as
and respectively with and for . A
novel algorithm of finding the exact ground state, with the effective time
complexity of \cO(N^3), is introduced and used to confirm the conjecture
numerically.Comment: 9 pages, 7 figure
Radiation from low-momentum zoom-whirl orbits
We study zoom-whirl behaviour of equal mass, non-spinning black hole binaries
in full general relativity. The magnitude of the linear momentum of the initial
data is fixed to that of a quasi-circular orbit, and its direction is varied.
We find a global maximum in radiated energy for a configuration which completes
roughly one orbit. The radiated energy in this case exceeds the value of a
quasi-circular binary with the same momentum by 15%. The direction parameter
only requires minor tuning for the localization of the maximum. There is
non-trivial dependence of the energy radiated on eccentricity (several local
maxima and minima). Correlations with orbital dynamics shortly before merger
are discussed. While being strongly gauge dependent, these findings are
intuitive from a physical point of view and support basic ideas about the
efficiency of gravitational radiation from a binary system.Comment: 9 pages, 6 figures, Amaldi8 conference proceedings as publishe
- …
