4,693 research outputs found
Artritis viral/tenosinovitis y otros problemas de las patas de carácter infeccioso y no infeccioso que se producen en broilers y reproductores de carne
Helicity Amplitudes for Single-Top Production
Single top quark production at hadron colliders allows a direct measurement
of the top quark charged current coupling. We present the complete tree-level
helicity amplitudes for four processes involving the production and
semileptonic decay of a single top quark: W-gluon fusion, flavor excitation,
s-channel production and W-associated production. For the first three processes
we study the quality of the narrow top width approximation. We also examine
momentum and angular distributions of some of the final state particles.Comment: 27 pages, 7 figures, final versio
Current driven switching of magnetic layers
The switching of magnetic layers is studied under the action of a spin
current in a ferromagnetic metal/non-magnetic metal/ferromagnetic metal spin
valve. We find that the main contribution to the switching comes from the
non-equilibrium exchange interaction between the ferromagnetic layers. This
interaction defines the magnetic configuration of the layers with minimum
energy and establishes the threshold for a critical switching current.
Depending on the direction of the critical current, the interaction changes
sign and a given magnetic configuration becomes unstable. To model the time
dependence of the switching process, we derive a set of coupled Landau-Lifshitz
equations for the ferromagnetic layers. Higher order terms in the
non-equilibrium exchange coupling allow the system to evolve to its
steady-state configuration.Comment: 8 pages, 2 figure. Submitted to Phys. Rev.
Mechanisms of spin-polarized current-driven magnetization switching
The mechanisms of the magnetization switching of magnetic multilayers driven
by a current are studied by including exchange interaction between local
moments and spin accumulation of conduction electrons. It is found that this
exchange interaction leads to two additional terms in the
Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both
terms are proportional to the transverse spin accumulation and have comparable
magnitudes
Field dependence of magnetization reversal by spin transfer
We analyse the effect of the applied field (Happl) on the current-driven
magnetization reversal in pillar-shaped Co/Cu/Co trilayers, where we observe
two different types of transition between the parallel (P) and antiparallel
(AP) magnetic configurations of the Co layers. If Happl is weaker than a rather
small threshold value, the transitions between P and AP are irreversible and
relatively sharp. For Happl exceding the threshold value, the same transitions
are progressive and reversible. We show that the criteria for the stability of
the P and AP states and the experimentally observed behavior can be precisely
accounted for by introducing the current-induced torque of the spin transfer
models in a Landau-Lifschitz-Gilbert equation. This approach also provides a
good description for the field dependence of the critical currents
Time-Dependent Spintronic Transport and Current-Induced Spin Transfer Torque in Magnetic Tunnel Junctions
The responses of the electrical current and the current-induced spin transfer
torque (CISTT) to an ac bias in addition to a dc bias in a magnetic tunnel
junction are investigated by means of the time-dependent nonquilibrium Green
function technique. The time-averaged current (time-averaged CISTT) is
formulated in the form of a summation of dc current (dc CISTT) multiplied by
products of Bessel functions with the energy levels shifted by . The tunneling current can be viewed as to happen between the photonic
sidebands of the two ferromagnets. The electrons can pass through the barrier
easily under high frequencies but difficultly under low frequencies. The tunnel
magnetoresistance almost does not vary with an ac field. It is found that the
spin transfer torque, still being proportional to the electrical current under
an ac bias, can be changed by varying frequency. Low frequencies could yield a
rapid decrease of the spin transfer torque, while a large ac signal leads to
both decrease of the electrical current and the spin torque. If only an ac bias
is present, the spin transfer torque is sharply enhanced at the particular
amplitude and frequency of the ac bias. A nearly linear relation between such
an amplitude and frequency is observed.Comment: 13 pages,8 figure
- …
