100 research outputs found

    Eigenvalues of Laplacian with constant magnetic field on non-compact hyperbolic surfaces with finite area

    Get PDF
    We consider a magnetic Laplacian ΔA=(id+A)(id+A)-\Delta_A=(id+A)^\star (id+A) on a noncompact hyperbolic surface \mM with finite area. AA is a real one-form and the magnetic field dAdA is constant in each cusp. When the harmonic component of AA satifies some quantified condition, the spectrum of ΔA-\Delta_A is discrete. In this case we prove that the counting function of the eigenvalues of ΔA-\Delta_{A} satisfies the classical Weyl formula, even when $dA=0.

    Random Operator Approach for Word Enumeration in Braid Groups

    Full text link
    We investigate analytically the problem of enumeration of nonequivalent primitive words in the braid group B_n for n >> 1 by analysing the random word statistics and the target space on the basis of the locally free group approximation. We develop a "symbolic dynamics" method for exact word enumeration in locally free groups and bring arguments in support of the conjecture that the number of very long primitive words in the braid group is not sensitive to the precise local commutation relations. We consider the connection of these problems with the conventional random operator theory, localization phenomena and statistics of systems with quenched disorder. Also we discuss the relation of the particular problems of random operator theory to the theory of modular functionsComment: 36 pages, LaTeX, 4 separated Postscript figures, submitted to Nucl. Phys. B [PM

    Analytic Continuation for Asymptotically AdS 3D Gravity

    Get PDF
    We have previously proposed that asymptotically AdS 3D wormholes and black holes can be analytically continued to the Euclidean signature. The analytic continuation procedure was described for non-rotating spacetimes, for which a plane t=0 of time symmetry exists. The resulting Euclidean manifolds turned out to be handlebodies whose boundary is the Schottky double of the geometry of the t=0 plane. In the present paper we generalize this analytic continuation map to the case of rotating wormholes. The Euclidean manifolds we obtain are quotients of the hyperbolic space by a certain quasi-Fuchsian group. The group is the Fenchel-Nielsen deformation of the group of the non-rotating spacetime. The angular velocity of an asymptotic region is shown to be related to the Fenchel-Nielsen twist. This solves the problem of classification of rotating black holes and wormholes in 2+1 dimensions: the spacetimes are parametrized by the moduli of the boundary of the corresponding Euclidean spaces. We also comment on the thermodynamics of the wormhole spacetimes.Comment: 28 pages, 14 figure

    Random polynomials, random matrices, and LL-functions

    Full text link
    We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.Comment: Added background material. Final version. To appear in Nonlinearit

    Amplitude distribution of eigenfunctions in mixed systems

    Full text link
    We study the amplitude distribution of irregular eigenfunctions in systems with mixed classical phase space. For an appropriately restricted random wave model a theoretical prediction for the amplitude distribution is derived and good agreement with numerical computations for the family of limacon billiards is found. The natural extension of our result to more general systems, e.g. with a potential, is also discussed.Comment: 13 pages, 3 figures. Some of the pictures are included in low resolution only. For a version with pictures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ or http://www.maths.bris.ac.uk/~maab

    Physics of the Riemann Hypothesis

    Full text link
    Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number theoretical function, the Riemann zeta function and examine its influence in the realm of physics and also how physics may be suggestive for the resolution of one of mathematics' most famous unconfirmed conjectures, the Riemann Hypothesis. Does physics hold an essential key to the solution for this more than hundred-year-old problem? In this work we examine numerous models from different branches of physics, from classical mechanics to statistical physics, where this function plays an integral role. We also see how this function is related to quantum chaos and how its pole-structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations we highlight how physics can perhaps shed light on the Riemann Hypothesis. Naturally, our aim could not be to be comprehensive, rather we focus on the major models and aim to give an informed starting point for the interested Reader.Comment: 27 pages, 9 figure

    On the duality between periodic orbit statistics and quantum level statistics

    Full text link
    We discuss consequences of a recent observation that the sequence of periodic orbits in a chaotic billiard behaves like a poissonian stochastic process on small scales. This enables the semiclassical form factor Ksc(τ)K_{sc}(\tau) to agree with predictions of random matrix theories for other than infinitesimal τ\tau in the semiclassical limit.Comment: 8 pages LaTe

    Selberg Supertrace Formula for Super Riemann Surfaces III: Bordered Super Riemann Surfaces

    Full text link
    This paper is the third in a sequel to develop a super-analogue of the classical Selberg trace formula, the Selberg supertrace formula. It deals with bordered super Riemann surfaces. The theory of bordered super Riemann surfaces is outlined, and the corresponding Selberg supertrace formula is developed. The analytic properties of the Selberg super zeta-functions on bordered super Riemann surfaces are discussed, and super-determinants of Dirac-Laplace operators on bordered super Riemann surfaces are calculated in terms of Selberg super zeta-functions.Comment: 43 pages, amste

    N=4 Superconformal Algebra and the Entropy of HyperKahler Manifolds

    Full text link
    We study the elliptic genera of hyperKahler manifolds using the representation theory of N=4 superconformal algebra. We consider the decomposition of the elliptic genera in terms of N=4 irreducible characters, and derive the rate of increase of the multiplicities of half-BPS representations making use of Rademacher expansion. Exponential increase of the multiplicity suggests that we can associate the notion of an entropy to the geometry of hyperKahler manifolds. In the case of symmetric products of K3 surfaces our entropy agrees with the black hole entropy of D5-D1 system.Comment: 25 pages, 1 figur

    Notes on a paper of Mess

    Full text link
    These notes are a companion to the article "Lorentz spacetimes of constant curvature" by Geoffrey Mess, which was first written in 1990 but never published. Mess' paper will appear together with these notes in a forthcoming issue of Geometriae Dedicata.Comment: 26 page
    corecore