100 research outputs found
Eigenvalues of Laplacian with constant magnetic field on non-compact hyperbolic surfaces with finite area
We consider a magnetic Laplacian on a
noncompact hyperbolic surface \mM with finite area. is a real one-form
and the magnetic field is constant in each cusp. When the harmonic
component of satifies some quantified condition, the spectrum of
is discrete. In this case we prove that the counting function of
the eigenvalues of satisfies the classical Weyl formula, even
when $dA=0.
Random Operator Approach for Word Enumeration in Braid Groups
We investigate analytically the problem of enumeration of nonequivalent
primitive words in the braid group B_n for n >> 1 by analysing the random word
statistics and the target space on the basis of the locally free group
approximation. We develop a "symbolic dynamics" method for exact word
enumeration in locally free groups and bring arguments in support of the
conjecture that the number of very long primitive words in the braid group is
not sensitive to the precise local commutation relations. We consider the
connection of these problems with the conventional random operator theory,
localization phenomena and statistics of systems with quenched disorder. Also
we discuss the relation of the particular problems of random operator theory to
the theory of modular functionsComment: 36 pages, LaTeX, 4 separated Postscript figures, submitted to Nucl.
Phys. B [PM
Analytic Continuation for Asymptotically AdS 3D Gravity
We have previously proposed that asymptotically AdS 3D wormholes and black
holes can be analytically continued to the Euclidean signature. The analytic
continuation procedure was described for non-rotating spacetimes, for which a
plane t=0 of time symmetry exists. The resulting Euclidean manifolds turned out
to be handlebodies whose boundary is the Schottky double of the geometry of the
t=0 plane. In the present paper we generalize this analytic continuation map to
the case of rotating wormholes. The Euclidean manifolds we obtain are quotients
of the hyperbolic space by a certain quasi-Fuchsian group. The group is the
Fenchel-Nielsen deformation of the group of the non-rotating spacetime. The
angular velocity of an asymptotic region is shown to be related to the
Fenchel-Nielsen twist. This solves the problem of classification of rotating
black holes and wormholes in 2+1 dimensions: the spacetimes are parametrized by
the moduli of the boundary of the corresponding Euclidean spaces. We also
comment on the thermodynamics of the wormhole spacetimes.Comment: 28 pages, 14 figure
Random polynomials, random matrices, and -functions
We show that the Circular Orthogonal Ensemble of random matrices arises
naturally from a family of random polynomials. This sheds light on the
appearance of random matrix statistics in the zeros of the Riemann
zeta-function.Comment: Added background material. Final version. To appear in Nonlinearit
Amplitude distribution of eigenfunctions in mixed systems
We study the amplitude distribution of irregular eigenfunctions in systems
with mixed classical phase space. For an appropriately restricted random wave
model a theoretical prediction for the amplitude distribution is derived and
good agreement with numerical computations for the family of limacon billiards
is found. The natural extension of our result to more general systems, e.g.
with a potential, is also discussed.Comment: 13 pages, 3 figures. Some of the pictures are included in low
resolution only. For a version with pictures in high resolution see
http://www.physik.uni-ulm.de/theo/qc/ or http://www.maths.bris.ac.uk/~maab
Physics of the Riemann Hypothesis
Physicists become acquainted with special functions early in their studies.
Consider our perennial model, the harmonic oscillator, for which we need
Hermite functions, or the Laguerre functions in quantum mechanics. Here we
choose a particular number theoretical function, the Riemann zeta function and
examine its influence in the realm of physics and also how physics may be
suggestive for the resolution of one of mathematics' most famous unconfirmed
conjectures, the Riemann Hypothesis. Does physics hold an essential key to the
solution for this more than hundred-year-old problem? In this work we examine
numerous models from different branches of physics, from classical mechanics to
statistical physics, where this function plays an integral role. We also see
how this function is related to quantum chaos and how its pole-structure
encodes when particles can undergo Bose-Einstein condensation at low
temperature. Throughout these examinations we highlight how physics can perhaps
shed light on the Riemann Hypothesis. Naturally, our aim could not be to be
comprehensive, rather we focus on the major models and aim to give an informed
starting point for the interested Reader.Comment: 27 pages, 9 figure
On the duality between periodic orbit statistics and quantum level statistics
We discuss consequences of a recent observation that the sequence of periodic
orbits in a chaotic billiard behaves like a poissonian stochastic process on
small scales. This enables the semiclassical form factor to
agree with predictions of random matrix theories for other than infinitesimal
in the semiclassical limit.Comment: 8 pages LaTe
Selberg Supertrace Formula for Super Riemann Surfaces III: Bordered Super Riemann Surfaces
This paper is the third in a sequel to develop a super-analogue of the
classical Selberg trace formula, the Selberg supertrace formula. It deals with
bordered super Riemann surfaces. The theory of bordered super Riemann surfaces
is outlined, and the corresponding Selberg supertrace formula is developed. The
analytic properties of the Selberg super zeta-functions on bordered super
Riemann surfaces are discussed, and super-determinants of Dirac-Laplace
operators on bordered super Riemann surfaces are calculated in terms of Selberg
super zeta-functions.Comment: 43 pages, amste
N=4 Superconformal Algebra and the Entropy of HyperKahler Manifolds
We study the elliptic genera of hyperKahler manifolds using the
representation theory of N=4 superconformal algebra. We consider the
decomposition of the elliptic genera in terms of N=4 irreducible characters,
and derive the rate of increase of the multiplicities of half-BPS
representations making use of Rademacher expansion. Exponential increase of the
multiplicity suggests that we can associate the notion of an entropy to the
geometry of hyperKahler manifolds. In the case of symmetric products of K3
surfaces our entropy agrees with the black hole entropy of D5-D1 system.Comment: 25 pages, 1 figur
Notes on a paper of Mess
These notes are a companion to the article "Lorentz spacetimes of constant
curvature" by Geoffrey Mess, which was first written in 1990 but never
published. Mess' paper will appear together with these notes in a forthcoming
issue of Geometriae Dedicata.Comment: 26 page
- …
