1,069 research outputs found
Moving Mirrors and Thermodynamic Paradoxes
Quantum fields responding to "moving mirrors" have been predicted to give
rise to thermodynamic paradoxes. I show that the assumption in such work that
the mirror can be treated as an external field is invalid: the exotic
energy-transfer effects necessary to the paradoxes are well below the scales at
which the model is credible. For a first-quantized point-particle mirror, it
appears that exotic energy-transfers are lost in the quantum uncertainty in the
mirror's state. An accurate accounting of these energies will require a model
which recognizes the mirror's finite reflectivity, and almost certainly a model
which allows for the excitation of internal mirror modes, that is, a
second-quantized model.Comment: 7 pages, Revtex with Latex2
Rights-based reasoning in discussions about lesbian and gay issues: implications for moral educators
Despite a paucity of psychological research exploring the interface between lesbian and gay issues and human rights, a human rights framework has been widely adopted in debates to gain equality for lesbians and gay men. Given this prominence within political discourse of human rights as a framework for the promotion of positive social change for lesbians and gay men, the aim of this study was to explore the extent to which rights-based arguments are employed when talking about lesbian and gay issues in a social context. An analysis of six focus group discussions with students showed that when lesbian and gay issues are discussed, rights-based reasoning is employed intermittently, and in relation to certain issues more so than others. The implications of these findings for moral education aimed at promoting positive social change for lesbians and gay men are discussed.</p
The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin
A Universal Neutral Gas Profile for Nearby Disk Galaxies
Based on sensitive CO measurements from HERACLES and HI data from THINGS, we
show that the azimuthally averaged radial distribution of the neutral gas
surface density (Sigma_HI + Sigma_H2) in 33 nearby spiral galaxies exhibits a
well-constrained universal exponential distribution beyond 0.2*r25 (inside of
which the scatter is large) with less than a factor of two scatter out to two
optical radii r25. Scaling the radius to r25 and the total gas surface density
to the surface density at the transition radius, i.e., where Sigma_HI and
Sigma_H2 are equal, as well as removing galaxies that are interacting with
their environment, yields a tightly constrained exponential fit with average
scale length 0.61+-0.06 r25. In this case, the scatter reduces to less than 40%
across the optical disks (and remains below a factor of two at larger radii).
We show that the tight exponential distribution of neutral gas implies that the
total neutral gas mass of nearby disk galaxies depends primarily on the size of
the stellar disk (influenced to some degree by the great variability of
Sigma_H2 inside 0.2*r25). The derived prescription predicts the total gas mass
in our sub-sample of 17 non-interacting disk galaxies to within a factor of
two. Given the short timescale over which star formation depletes the H2
content of these galaxies and the large range of r25 in our sample, there
appears to be some mechanism leading to these largely self-similar radial gas
distributions in nearby disk galaxies.Comment: 7 pages, 4 figures, accepted for publication in the Astrophysical
Journa
`Operational' Energy Conditions
I show that a quantized Klein-Gordon field in Minkowski space obeys an
`operational' weak energy condition: the energy of an isolated device
constructed to measure or trap the energy in a region, plus the energy it
measures or traps, cannot be negative. There are good reasons for thinking that
similar results hold locally for linear quantum fields in curved space-times. A
thought experiment to measure energy density is analyzed in some detail, and
the operational positivity is clearly manifested.
If operational energy conditions do hold for quantum fields, then the
negative energy densities predicted by theory have a will-o'-the-wisp
character: any local attempt to verify a total negative energy density will be
self-defeating on account of quantum measurement difficulties. Similarly,
attempts to drive exotic effects (wormholes, violations of the second law,
etc.) by such densities may be defeated by quantum measurement problems. As an
example, I show that certain attempts to violate the Cosmic Censorship
principle by negative energy densities are defeated.
These quantum measurement limitations are investigated in some detail, and
are shown to indicate that space-time cannot be adequately modeled classically
in negative energy density regimes.Comment: 18 pages, plain Tex, IOP macros. Expanded treatment of measurement
problems for space-time, with implications for Cosmic Censorship as an
example. Accepted by Classical and Quantum Gravit
Kant's philosophy of the aesthetic and the philosophy of praxis
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2012 Association for Economic and Social Analysis.This essay seeks to reconstruct the terms for a more productive engagement with Kant than is typical within contemporary academic cultural Marxism, which sees him as the cornerstone of a bourgeois model of the aesthetic. The essay argues that, in the Critique of Judgment, the aesthetic stands in as a substitute for the missing realm of human praxis. This argument is developed in relation to Kant's concept of reflective judgment that is in turn related to a methodological shift toward inductive and analogical procedures that help Kant overcome the dualisms of the first two Critiques. This reassessment of Kant's aesthetic is further clarified by comparing it with and offering a critique of Terry Eagleton's assessment of the Kantian aesthetic as synonymous with ideology
Spatially Averaged Quantum Inequalities Do Not Exist in Four-Dimensional Spacetime
We construct a particular class of quantum states for a massless, minimally
coupled free scalar field which are of the form of a superposition of the
vacuum and multi-mode two-particle states. These states can exhibit local
negative energy densities. Furthermore, they can produce an arbitrarily large
amount of negative energy in a given region of space at a fixed time. This
class of states thus provides an explicit counterexample to the existence of a
spatially averaged quantum inequality in four-dimensional spacetime.Comment: 13 pages, 1 figure, minor corrections and added comment
- …
