4,986 research outputs found
Simulation Studies of the NLC with Improved Ground Motion Models
The performance of various systems of the Next Linear Collider (NLC) have
been studied in terms of ground motion using recently developed models. In
particular, the performance of the beam delivery system is discussed. Plans to
evaluate the operation of the main linac beam-based alignment and feedback
systems are also outlined.Comment: Submitted to XX International Linac Conferenc
Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project
To date, an experimental dip-coating facility was constructed. Using this facility, relatively thin (1 mm) mullite and alumina substrates were successfully dip-coated with 2.5 - 3.0 ohm-cm, p-type silicon with areas of approximately 20 sq cm. The thickness and grain size of these coatings are influenced by the temperature of the melt and the rate at which the substrate is pulled from the melt. One mullite substrate had dendrite-like crystallites of the order of 1 mm wide and 1 to 2 cm long. Their axes were aligned along the direction of pulling. A large variety of substrate materials were purchased or developed enabling the program to commence a substrate definition evaluation. Due to the insulating nature of the substrate, the bottom layer of the p-n junction may have to be made via the top surface. The feasibility of accomplishing this was demonstrated using single crystal wafers
Recommended from our members
Elevated plasma levels of TIMP-3 are associated with a higher risk of acute respiratory distress syndrome and death following severe isolated traumatic brain injury.
BackgroundComplications after injury, such as acute respiratory distress syndrome (ARDS), are common after traumatic brain injury (TBI) and associated with poor clinical outcomes. The mechanisms driving non-neurologic organ dysfunction after TBI are not well understood. Tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) is a regulator of matrix metalloproteinase activity, inflammation, and vascular permeability, and hence has plausibility as a biomarker for the systemic response to TBI.MethodsIn a retrospective study of 182 patients with severe isolated TBI, we measured TIMP-3 in plasma obtained on emergency department arrival. We used non-parametric tests and logistic regression analyses to test the association of TIMP-3 with the incidence of ARDS within 8 days of admission and in-hospital mortality.ResultsTIMP-3 was significantly higher among subjects who developed ARDS compared with those who did not (median 2810 pg/mL vs. 2260 pg/mL, p=0.008), and significantly higher among subjects who died than among those who survived to discharge (median 2960 pg/mL vs. 2080 pg/mL, p<0.001). In an unadjusted logistic regression model, for each SD increase in plasma TIMP-3, the odds of ARDS increased significantly, OR 1.5 (95% CI 1.1 to 2.1). This association was only attenuated in multivariate models, OR 1.4 (95% CI 1.0 to 2.0). In an unadjusted logistic regression model, for each SD increase in plasma TIMP-3, the odds of death increased significantly, OR 1.7 (95% CI 1.2 to 2.3). The magnitude of this association was greater in a multivariate model adjusted for markers of injury severity, OR 1.9 (95% CI 1.2 to 2.8).DiscussionTIMP-3 may play an important role in the biology of the systemic response to brain injury in humans. Along with clinical and demographic data, early measurements of plasma biomarkers such as TIMP-3 may help identify patients at higher risk of ARDS and death after severe isolated TBI.Level of evidenceIII
Host Genomic Influences on HIV/AIDS
The AIDS era has seen multiple advances in the power of genetics research; scores of host genetic protective factors have been nominated and several have translated to the bedside. We discuss how genomics may inform HIV/AIDS prevention, treatment and eradication
Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions
Background: Transposable elements (TEs) have significantly influenced the evolution of transcriptional regulatory networks in the human genome. Post-transcriptional regulation of human genes by TE-derived sequences has been observed in specific contexts, but has yet to be systematically and comprehensively investigated. Here, we study a collection of 75 CLIP-Seq experiments mapping the RNA binding sites for a diverse set of 51 human proteins to explore the role of TEs in post-transcriptional regulation of human mRNAs and lncRNAs via RNA-protein interactions. Results: We detect widespread interactions between RNA binding proteins (RBPs) and many families of TE-derived sequence in the CLIP-Seq data. Further, alignment coverage peaks on specific positions of the TE consensus sequences, illuminating a diversity of TE-specific RBP binding motifs. Evidence of binding and conservation of these motifs in the nonrepetitive transcriptome suggests that TEs have generally appropriated existing sequence preferences of the RBPs. Depletion assays for numerous RBPs show that TE-derived binding sites affect transcript abundance and splicing similarly to nonrepetitive sites. However, in a few cases the effect of RBP binding depends on the specific TE family bound; for example, the ubiquitously expressed RBP HuR confers transcript stability unless bound to an Alu element. Conclusions: Our meta-analysis suggests a widespread role for TEs in shaping RNA-protein regulatory networks in the human genome. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0537-5) contains supplementary material, which is available to authorized users
Complete genome sequences of three novel Pseudomonas fluorescens SBW25 bacteriophages, Noxifer, Phabio, and Skulduggery
Three novel bacteriophages, two of which are jumbophages, were isolated from compost in Auckland, New Zealand. Noxifer, Phabio, and Skulduggery are double-stranded DNA (dsDNA) phages with genome sizes of 278,136 bp (Noxifer), 309,157 bp (Phabio), and 62,978 bp (Skulduggery)
Dip coating process: Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project
The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry
- …
