2,268 research outputs found
CO Abundance Variations in the Orion Molecular Cloud
Infrared stellar photometry from 2MASS and spectral line imaging observations
of 12CO and 13CO J = 1-0 line emission from the FCRAO 14m telescope are
analysed to assess the variation of the CO abundance with physical conditions
throughout the Orion A and Orion B molecular clouds. Three distinct Av regimes
are identified in which the ratio between the 13CO column density and visual
extinction changes corresponding to the photon dominated envelope, the strongly
self-shielded interior, and the cold, dense volumes of the clouds. Within the
strongly self-shielded interior of the Orion A cloud, the 13CO abundance varies
by 100% with a peak value located near regions of enhanced star formation
activity. The effect of CO depletion onto the ice mantles of dust grains is
limited to regions with AV > 10 mag and gas temperatures less than 20 K as
predicted by chemical models that consider thermal-evaporation to desorb
molecules from grain surfaces.
Values of the molecular mass of each cloud are independently derived from the
distributions of Av and 13CO column densities with a constant 13CO-to-H2
abundance over various extinction ranges. Within the strongly self-shielded
interior of the cloud (Av > 3 mag), 13CO provides a reliable tracer of H2 mass
with the exception of the cold, dense volumes where depletion is important.
However, owing to its reduced abundance, 13CO does not trace the H2 mass that
resides in the extended cloud envelope, which comprises 40-50% of the molecular
mass of each cloud. The implied CO luminosity to mass ratios, M/L_{CO}, are 3.2
and 2.9 for Orion A and Orion B respectively, which are comparable to the value
(2.9), derived from gamma-ray observations of the Orion region. Our results
emphasize the need to consider local conditions when applying CO observations
to derive H2 column densities.Comment: Accepted for publication in MNRAS. 21 pages, 14 figure
Reconstitution of recombination-associated DNA synthesis with human proteins.
The repair of DNA breaks by homologous recombination is a high-fidelity process, necessary for the maintenance of genome integrity. Thus, DNA synthesis associated with recombinational repair must be largely error-free. In this report, we show that human DNA polymerase delta (δ) is capable of robust DNA synthesis at RAD51-mediated recombination intermediates dependent on the processivity clamp PCNA. Translesion synthesis polymerase eta (η) also extends these substrates, albeit far less processively. The single-stranded DNA binding protein RPA facilitates recombination-mediated DNA synthesis by increasing the efficiency of primer utilization, preventing polymerase stalling at specific sequence contexts, and overcoming polymerase stalling caused by topological constraint allowing the transition to a migrating D-loop. Our results support a model whereby the high-fidelity replicative DNA polymerase δ performs recombination-associated DNA synthesis, with translesion synthesis polymerases providing a supportive role as in normal replication
Shakespearean allusion and the detective fiction of Georgette Heyer
This essay argues that Shakespearean allusion is a recurrent and important factor in the detective novels of Georgette Heyer. Though the master text for Heyer is Hamlet, a variety of Shakespeare plays are referred to, and mention of them functions in multiple ways. Quotations from Shakespeare reveal truths about the characters and comment on their situations and personalities. They also afford points of entry for people previously unacquainted to talk to each other, and finally they have effects in terms of genre, since their presence can, with equal facility, tend towards comic relief (in line with a tradition in Golden Age crime fiction of using Macbeth in particular to comic effect) or work to add gravitas and resonance. The use of Shakespearean allusion is thus central to Heyer’s technique. This article is published as part of a collection to commemorate the 400th anniversary of William Shakespeare’s death
WFPC2 Observations of NGC 454: an Interacting Pair of Galaxies
We present WFPC2 images in the F450W, F606W and F814W filters of the
interacting pair of galaxies NGC 454. Our data indicate that the system is in
the early stages of interaction. A population of young star-clusters has formed
around the late component, and substantial amounts of gas have sunk into the
center of the earlier component, where it has not yet produced significant
visible star formation or nuclear activity. We have photometric evidence that
the star-clusters have strong line emission, which indicate the presence of a
substantial component of hot, massive stars which formed less than 5-10 Myrs
ago.Comment: 14 pages, 4 figures, Latex (AAS macros), ApJL in pres
Symmetry, incommensurate magnetism and ferroelectricity: the case of the rare-earth manganites RMnO3
The complete irreducible co-representations of the paramagnetic space group
provide a simple and direct path to explore the symmetry restrictions of
magnetically driven ferroelectricity. The method consists of a straightforward
generalization of the method commonly used in the case of displacive modulated
systems and allows us to determine, in a simple manner, the full magnetic
symmetry of a given phase originated from a given magnetic order parameter. The
potential ferroic and magneto-electric properties of that phase can then be
established and the exact Landau free energy expansions can be derived from
general symmetry considerations. In this work, this method is applied to the
case of the orthorhombic rare-earth manganites RMnO3. This example will allow
us to stress some specific points, such as the differences between commensurate
or incommensurate magnetic phases regarding the ferroic and magnetoelectric
properties, the possible stabilization of ferroelectricity by a single
irreducible order parameter or the possible onset of a polarization oriented
parallel to the magnetic modulation. The specific example of TbMnO3 will be
considered in more detail, in order to characterize the role played by the
magneto-electric effect in the mechanism for the polarization rotation induced
by an external magnetic field.Comment: Conference: Aperiodic`0
Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?
The origin of striations aligned along the local magnetic field direction in
the translucent envelope of the Taurus molecular cloud is examined with new
observations of 12CO and 13CO J=2-1 emission obtained with the 10~m
submillimeter telescope of the Arizona Radio Observatory. These data identify a
periodic pattern of excess blue and redshifted emission that is responsible for
the striations. For both 12CO and 13CO, spatial variations of the J=2-1 to
J=1-0 line ratio are small and are not spatially correlated with the striation
locations. A medium comprised of unresolved CO emitting substructures (cells)
with a beam area filling factor less than unity at any velocity is required to
explain the average line ratios and brightness temperatures. We propose that
the striations result from the modulation of velocities and the beam filling
factor of the cells as a result of either the Kelvin-Helmholtz instability or
magnetosonic waves propagating through the envelope of the Taurus molecular
cloud. Both processes are likely common features in molecular clouds that are
sub-Alfvenic and may explain low column density, cirrus-like features similarly
aligned with the magnetic field observed throughout the interstellar medium in
far-infrared surveys of dust emission.Comment: 11 pages, 4 figures. Accepted for publication in MNRA
Towards incorporating affective computing to virtual rehabilitation: surrogating attributed attention from posture for boosting therapy adaptation
Resistivity and Hall effect of LiFeAs: Evidence for electron-electron scattering
LiFeAs is unique among the broad family of FeAs-based superconductors,
because it is superconducting with a rather large K under
ambient conditions although it is a stoichiometric compound. We studied the
electrical transport on a high-quality single crystal. The resistivity shows
quadratic temperature dependence at low temperature giving evidence for strong
electron-electron scattering and a tendency towards saturation around room
temperature. The Hall constant is negative and changes with temperature, what
most probably arises from a van Hove singularity close to the Fermi energy in
one of the hole-like bands. Using band structure calculations based on angular
resolved photoemission spectra we are able to reproduce all the basic features
of both the resistivity as well as the Hall effect data.Comment: 6 pages, 3 figures included; V2 has been considerably revised and
contain a more detailed analysis of the Hall effect dat
Embedded Stellar Clusters in the W3/W4/W5 Molecular Cloud Complex
We analyze the embedded stellar content in the vicinity of the W3/W4/W5 HII
regions using the FCRAO Outer Galaxy 12CO(J=1-0) Survey, the IRAS Point Source
Catalog, published radio continuum surveys, and new near-infrared and molecular
line observations. Thirty-four IRAS Point Sources are identified that have
far-infrared colors characteristic of embedded star forming regions, and we
have obtained K' mosaics and 13CO(J=1-0) maps for 32 of them. Ten of the IRAS
sources are associated with an OB star and 19 with a stellar cluster, although
three OB stars are not identified with a cluster. Half of the embedded stellar
population identified in the K' images is found in just the 5 richest clusters,
and 61% is contained in IRAS sources associated with an embedded OB star. Thus
rich clusters around OB stars contribute substantially to the stellar
population currently forming in the W3/W4/W5 region. Approximately 39% of the
cluster population is embedded in small clouds with an average mass of ~130 Mo
that are located as far as 100 pc from the W3/W4/W5 cloud complex. We speculate
that these small clouds are fragments of a cloud complex dispersed by previous
episodes of massive star formation. Finally, we find that 4 of the 5 known
embedded massive star forming sites in the W3 molecular cloud are found along
the interface with the W4 HII region despite the fact that most of the
molecular mass is contained in the interior regions of the cloud. These
observations are consistent with the classical notion that the W4 HII region
has triggered massive star formation along the eastern edge of the W3 molecular
cloud.Comment: to appear in ApJS, see http://astro.caltech.edu/~jmc/papers/w
- …
