3,803 research outputs found
How to Mix Molecules with Mathematics
In this paper we develop two methods to calculate thermodynamic properties of mixtures. Starting point are the basic assumptions that also form the basis for the COSMO-RS model. In this approach, the individual molecules are represented by their geometrical shape with an electrical charge density on their surfaces. Next, the surface is split up into surface segments each with its own charge. In COSMO-RS a strong reduction is introduced by treating the segments as if they are completely independent. In the present study we take into account that the coupling between two patches is essentially dependent on the charge distribution on neighboring segments and on the local geometrical structure of the surface. Two approaches are followed. The first one points out how the model
equations, which comprise the optimization of the entropy and conservation of internal energy, can efficiently be solved in general, thus also if the dependency between segments and the local geometry is included in the expression for the coupling energy between segments. In the second method the configuration with maximal entropy and prescribed energy is sought via simulation. Successive molecular configurations of the mixture are simulated and updated via a genetic algorithm to optimize the entropy. The second method is more time consuming but very general
Diffractive point sets with entropy
After a brief historical survey, the paper introduces the notion of entropic
model sets (cut and project sets), and, more generally, the notion of
diffractive point sets with entropy. Such sets may be thought of as
generalizations of lattice gases. We show that taking the site occupation of a
model set stochastically results, with probabilistic certainty, in well-defined
diffractive properties augmented by a constant diffuse background. We discuss
both the case of independent, but identically distributed (i.i.d.) random
variables and that of independent, but different (i.e., site dependent) random
variables. Several examples are shown.Comment: 25 pages; dedicated to Hans-Ude Nissen on the occasion of his 65th
birthday; final version, some minor addition
Open source software for semi-automated histomorphometry of bone resorption and formation parameters
Micro-CT analysis has become the standard method for assessing bone volume and architecture in small animals. However, micro-CT does not allow the assessment of bone turnover parameters such as bone formation rate and osteoclast (OC) number and surface. For these crucial variables histomorphometric analysis is still an essential technique. Histomorphometry however, is time consuming and, especially in mouse bones, OCs can be difficult to detect. The main purpose of this study was to develop and validate a relatively easy and rapid method to measure static and dynamic bone histomorphometry parameters. Here we present the adaptation of established staining protocols and three novel open source image analysis packages: TrapHisto, OsteoidHisto and CalceinHisto that allow rapid, semi-automated analysis of histomorphometric bone resorption, osteoid, and calcein double labelling parameters respectively. These three programs are based on ImageJ, but use a relatively simple user interface that hides the underlying complexity of the image analysis
Repetitions in beta-integers
Classical crystals are solid materials containing arbitrarily long periodic
repetitions of a single motif. In this paper, we study the maximal possible
repetition of the same motif occurring in beta-integers -- one dimensional
models of quasicrystals. We are interested in beta-integers realizing only a
finite number of distinct distances between neighboring elements. In such a
case, the problem may be reformulated in terms of combinatorics on words as a
study of the index of infinite words coding beta-integers. We will solve a
particular case for beta being a quadratic non-simple Parry number.Comment: 11 page
Multinet : enabler for next generation enterprise wireless services
Wireless communications are currently experiencing a fast migration toward the beyond third-generation (B3G)/fourth generation (4G) era. This represents a generational change in wireless systems: new capabilities related to mobility and new services support is required and new concepts as individual-centric, user-centric or ambient-aware communications are included. One of the main restrictions associated to wireless technology is mobility management, this feature was not considered in the design phase; for this reason, a complete solution is not already found, although different solutions are proposed and are being proposed. In MULTINET project, features as mobility and multihoming are applied to wireless network to provide the necessary network and application functionality enhancements for seamless data communication mobility considering end-user scenario and preferences. The aim of this paper is to show the benefits of these functionalities from the Service Providers and final User point of view
Rapid and MR-Independent IK1 activation by aldosterone during ischemia-reperfusion
In ST elevation myocardial infarction (STEMI) context, clinical studies have shown the deleterious
effect of high aldosterone levels on ventricular arrhythmia occurrence and cardiac
mortality. Previous in vitro reports showed that during ischemia-reperfusion, aldosterone
modulates K+ currents involved in the holding of the resting membrane potential (RMP).
The aim of this study was to assess the electrophysiological impact of aldosterone on IK1
current during myocardial ischemia-reperfusion. We used an in vitro model of “border zone”
using right rabbit ventricle and standard microelectrode technique followed by cell-attached
recordings from freshly isolated rabbit ventricular cardiomyocytes. In microelectrode experiments,
aldosterone (10 and 100 nmol/L, n=7 respectively) increased the action potential
duration (APD) dispersion at 90% between ischemic and normoxic zones (from 95±4ms to
116±6 ms and 127±5 ms respectively, P<0.05) and reperfusion-induced sustained premature
ventricular contractions occurrence (from 2/12 to 5/7 preparations, P<0.05). Conversely,
potassium canrenoate 100 nmol/L and RU 28318 1 μmol/l alone did not affect AP
parameters and premature ventricular contractions occurrence (except Vmax which was
decreased by potassium canrenoate during simulated-ischemia). Furthermore, aldosterone
induced a RMP hyperpolarization, evoking an implication of a K+ current involved in the
holding of the RMP. Cell-attached recordings showed that aldosterone 10 nmol/L quickly
activated (within 6.2±0.4 min) a 30 pS K+-selective current, inward rectifier, with pharmacological
and biophysical properties consistent with the IK1 current (NPo =1.9±0.4 in control vs
NPo=3.0±0.4, n=10, P<0.05). These deleterious effects persisted in presence of RU 28318,
a specific MR antagonist, and were successfully prevented by potassium canrenoate, a non
specific MR antagonist, in both microelectrode and patch-clamp recordings, thus indicating
a MR-independent IK1 activation. In this ischemia-reperfusion context, aldosterone induced
rapid and MR-independent deleterious effects including an arrhythmia substrate (increased
APD90 dispersion) and triggered activities (increased premature ventricular contractions
occurrence on reperfusion) possibly related to direct IK1 activation
Measurement of 0.25-3.2 GeV antiprotons in the cosmic radiation
The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba, Canada on 16–17 July 1992. Using velocity and magnetic rigidity to determine mass, we have directly measured the abundances of cosmic ray antiprotons and protons in the energy range from 0.25 to 3.2 GeV. Both the absolute flux of antiprotons and the antiproton/proton ratio are consistent with recent theoretical work in which antiprotons are produced as secondary products of cosmic ray interactions with the interstellar medium. This consistency implies a lower limit to the antiproton lifetime of ∼10 to the 7th yr
A review of implant provision for hypodontia patients within a Scottish referral centre
Background: Implant treatment to replace congenitally missing teeth often involves multidisciplinary input in a secondary care environment. High quality patient care requires an in-depth knowledge of treatment requirements.
Aim: This service review aimed to determine treatment needs, efficiency of service and outcomes achieved in hypodontia patients. It also aimed to determine any specific difficulties encountered in service provision, and suggest methods to overcome these.
Methods: Hypodontia patients in the Unit of Periodontics of the Scottish referral centre under consideration, who had implant placement and fixed restoration, or review completed over a 31 month period, were included. A standardised data collection form was developed and completed with reference to the patient's clinical record. Information was collected with regard to: the indication for implant treatment and its extent; the need for, complexity and duration of orthodontic treatment; the need for bone grafting and the techniques employed and indicators of implant success.
Conclusion: Implant survival and success rates were high for those patients reviewed. Incidence of biological complications compared very favourably with the literature
Tilings, tiling spaces and topology
To understand an aperiodic tiling (or a quasicrystal modeled on an aperiodic
tiling), we construct a space of similar tilings, on which the group of
translations acts naturally. This space is then an (abstract) dynamical system.
Dynamical properties of the space (such as mixing, or the spectrum of the
translation operator) are closely related to bulk properties of the individual
tilings (such as the diffraction pattern). The topology of the space of
tilings, particularly the Cech cohomology, gives information on how the
original tiling can be deformed. Tiling spaces can be constructed as inverse
limits of branched manifolds.Comment: 8 pages, including 2 figures, talk given at ICQ
- …
