1,283 research outputs found
Epitaxial Growth of Thin Films -- a Statistical Mechanical Model
A theoretical framework is developed to describe experiments on the structure
of epitaxial thin films, particularly niobium on sapphire. We extend the
hypothesis of dynamical scaling to apply to the structure of thin films from
its conventional application to simple surfaces. We then present a
phenomenological continuum theory that provides a good description of the
observed scattering and the measured exponents. Finally the results of
experiment and theory are compared.Comment: 10 pages, 3 figures, minor revisions. accepted for publication in J
Phys Condense Matte
Microstructural and morphological properties of homoepitaxial (001)ZnTe layers investigated by x-ray diffuse scattering
The microstructural and morphological properties of homoepitaxial (001)ZnTe
layers are investigated by x-ray diffuse scattering. High resolution reciprocal
space maps recorded close to the ZnTe (004) Bragg peak show different diffuse
scattering features. One kind of cross-shaped diffuse scattering streaks along
directions can be attributed to stacking faults within the epilayers.
Another kind of cross-shaped streaks inclined at an angle of about 80deg with
respect to the in-plane direction arises from the morphology of the
epilayers. (abridged version
Suppression of the ferromagnetic state in LaCoO3 films by rhombohedral distortion
Epitaxially strained LaCoO3 (LCO) thin films were grown with different film
thickness, t, on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT)
substrates. After initial pseudomorphic growth the films start to relieve their
strain partly by the formation of periodic nano-twins with twin planes
predominantly along the direction. Nano-twinning occurs already at the
initial stage of growth, albeit in a more moderate way. Pseudomorphic grains,
on the other hand, still grow up to a thickness of at least several tenths of
nanometers. The twinning is attributed to the symmetry lowering of the
epitaxially strained pseudo-tetragonal structure towards the relaxed
rhombohedral structure of bulk LCO. However, the unit-cell volume of the
pseudo-tetragonal structure is found to be nearly constant over a very large
range of t. Only films with t > 130 nm show a significant relaxation of the
lattice parameters towards values comparable to those of bulk LCO.Comment: 31 pages, 10 figure
Synchrotrons for hadron therapy, part 1
The treatment of cancer with accelerator beams has a long history with linacs, cyclotrons and now synchrotrons being exploited for this purpose. Treatment techniques can be broadly divided into the use of spread-out beams and scanned 'pencil' beams. The Bragg-peak behaviour of hadrons makes them ideal candidates for the latter. The combination of precisely focused 'pencil' beams with controllable penetration (Bragg peak) and high, radio-biological efficiency (light ions) opens the way to treating the more awkward tumours that are radio-resistant, complex in shape and lodged against critical organs. To accelerate light ions (probably carbon) with pulse-to-pulse energy variation, a synchrotron is the natural choice. The beam scanning system is controlled via an on-line measurement of the particle flux entering the patient and, for this reason, the beam spill must be extended in time (seconds) by a slow-extraction scheme. The quality of the dose intensity profile ultimately depends on the uniformity of the beam spill. This is the greatest challenge for the synchrotron, since slow-extraction schemes are notoriously sensitive. This paper reviews the extraction techniques, describes methods for smoothing the beam spill and outlines the implications for the extraction line and beam delivery system
An asymptotic form of the reciprocity theorem with applications in x-ray scattering
The emission of electromagnetic waves from a source within or near a
non-trivial medium (with or without boundaries, crystalline or amorphous, with
inhomogeneities, absorption and so on) is sometimes studied using the
reciprocity principle. This is a variation of the method of Green's functions.
If one is only interested in the asymptotic radiation fields the generality of
these methods may actually be a shortcoming: obtaining expressions valid for
the uninteresting near fields is not just a wasted effort but may be
prohibitively difficult. In this work we obtain a modified form the reciprocity
principle which gives the asymptotic radiation field directly. The method may
be used to obtain the radiation from a prescribed source, and also to study
scattering problems. To illustrate the power of the method we study a few
pedagogical examples and then, as a more challenging application we tackle two
related problems. We calculate the specular reflection of x rays by a rough
surface and by a smoothly graded surface taking polarization effects into
account. In conventional treatments of reflection x rays are treated as scalar
waves, polarization effects are neglected. This is a good approximation at
grazing incidence but becomes increasingly questionable for soft x rays and UV
at higher incidence angles.
PACs: 61.10.Dp, 61.10.Kw, 03.50.DeComment: 19 pages, 4 figure
Proton-Ion Medical Machine Study (PIMMS), 1
The Proton-Ion Medical Machine Study (PIMMS) group was formed following an agreement between the Med-AUSTRON (Austria) and the TERA Foundation (Italy) to combine their efforts in the design of a cancer therapy synchrotron. CERN agreed to host this study in its PS Division and a close collaboration was set up with GSI (Germany). The study group was later joined by Onkologie-2000 (Czech Republic). Effort was first focused on the theoretical understanding of slow extraction and the techniques required to produce a smooth beam spill for the conformal treatment of complex-shaped tumours with a sub-millimetre accuracy by active scanning with proton and carbon ion beams. Considerations for passive scanning were also included. The more general and theoretical aspects of the study are recorded in Part I and the more specific technical design considerations are presented in a second volume Part II. The PIMMS team started their work in January 1996 in the PS Division and continued for a period of three years
- …
