203 research outputs found

    Correction

    Get PDF

    Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella

    Get PDF
    Intraflagellar transport (IFT), which is the bidirectional movement of particles within flagella, is required for flagellar assembly. IFT particles are composed of ∼16 proteins, which are organized into complexes A and B. We have cloned Chlamydomonas reinhardtii and mouse IFT46, and show that IFT46 is a highly conserved complex B protein in both organisms. A C. reinhardtii insertional mutant null for IFT46 has short, paralyzed flagella lacking dynein arms and with central pair defects. The mutant has greatly reduced levels of most complex B proteins, indicating that IFT46 is necessary for complex B stability. A partial suppressor mutation restores flagellar length to the ift46 mutant. IFT46 is still absent, but levels of the other IFT particle proteins are largely restored, indicating that complex B is stabilized in the suppressed strain. Axonemal ultrastructure is restored, except that the outer arms are still missing, although outer arm subunits are present in the cytoplasm. Thus, IFT46 is specifically required for transporting outer arms into the flagellum

    A Central Role for Sympathetic Nerves in Herpes Stromal Keratitis in Mice

    Get PDF
    Citation: Yun H, Lathrop KL, Hendricks RL. A central role for sympathetic nerves in herpes stromal keratitis in mice. Invest Ophthalmol Vis Sci. 2016;57:174957: -175657: . DOI:10.1167 PURPOSE. Herpes simplex virus type 1 (HSV-1) is a neurotrophic virus that can cause herpes stromal keratitis (HSK), a severe corneal inflammation that can lead to corneal scarring and blindness. This study identified neurologic changes that occur in HSV-1-infected corneas and related them to HSV-1-induced immunopathology. METHODS. Corneas of BALB/c and C57BL/6 mice were infected with HSV-1 strains that induce HSK. Changes in sensory nerves were identified by immunofluorescence staining of sensory and sympathetic nerves for substance P (SP) and tyrosine hydroxylase (TH), respectively, and confocal microscopic examination. Some mice received superior cervical ganglionectomy (SCGx) to eliminate sympathetic nerves from the cornea. RESULTS. Normal corneas exclusively expressed sensory nerves that entered the stroma as large nerve stalks, branched to form a plexus at the epithelial/stromal interface, and extended termini into the epithelium. These nerves completely retracted from the infected cornea and were replaced by sympathetic nerves that sprouted extensively to hyperinnervate the corneal stroma but failed to form a plexus or extend termini into the epithelium. The hyperinnervating nerves expressed the sympathetic nerve marker TH and their invasion was blocked by performing SCGx. Moreover, the corneal opacity and neovascularization that normally characterizes HSK in this mouse model were largely abrogated by SCGx. Sensory nerves reinnervated infected corneas following SCGx, reformed a nerve plexus, and extended termini into the epithelium resulting in recovery of corneal sensitivity. CONCLUSIONS. Sympathetic nerves have a central role in HSK in mice, preventing reinnervation by sensory nerves and promoting severe and persistent corneal inflammation

    A Conserved Hydrophobic Patch on Vβ Domains Revealed by TCRβ Chain Crystal Structures: Implications for Pre-TCR Dimerization

    Get PDF
    The αβ T cell receptor (TCR) is a multimeric complex whose β chain plays a crucial role in thymocyte development as well as antigen recognition by mature T lymphocytes. We report here crystal structures of individual β subunits, termed N15β (Vβ5.2Dβ2Jβ2.6Cβ2) and N30β (Vβ13Dβ1Jβ1.1Cβ2), derived from two αβ TCRs specific for the immunodominant vesicular stomatitis virus octapeptide (VSV-8) bound to the murine H-2Kb MHC class I molecule. The crystal packing of the N15β structure reveals a homodimer formed through two Vβ domains. The Vβ/Vβ module is topologically very similar to the Vα/Vβ module in the N15αβ heterodimer. By contrast, in the N30β structure, the Vβ domain’s external hydrophobic CFG face is covered by the neighboring molecule’s Cβ domain. In conjunction with systematic investigation of previously published TCR single-subunit structures, we identified several conserved residues forming a concave hydrophobic patch at the center of the CFG outer face of the Vβ and other V-type Ig-like domains. This hydrophobic patch is shielded from solvent exposure in the crystal packing, implying that it is unlikely to be thermodynamically stable if exposed on the thymocyte surface. Accordingly, we propose a dimeric pre-TCR model distinct from those suggested previously by others and discuss its functional and structural implications

    Cyclic adenosine 5′-diphosphate ribose analogs without a southern ribose inhibit ADP-ribosyl cyclase-hydrolase CD38

    Get PDF
    Cyclic adenosine 5′-diphosphate ribose (cADPR) analogs based on the cyclic inosine 5′-diphosphate ribose (cIDPR) template were synthesized by recently developed stereo- and regioselective <i>N</i>1-ribosylation. Replacing the base <i>N</i>9-ribose with a butyl chain generates inhibitors of cADPR hydrolysis by the human ADP-ribosyl cyclase CD38 catalytic domain (shCD38), illustrating the nonessential nature of the “southern” ribose for binding. Butyl substitution generally improves potency relative to the parent cIDPRs, and 8-amino-<i>N</i>9-butyl-cIDPR is comparable to the best noncovalent CD38 inhibitors to date (IC<sub>50</sub> = 3.3 μM). Crystallographic analysis of the shCD38:8-amino-<i>N</i>9-butyl-cIDPR complex to a 2.05 Å resolution unexpectedly reveals an <i>N</i>1-hydrolyzed ligand in the active site, suggesting that it is the <i>N</i>6-imino form of cADPR that is hydrolyzed by CD38. While HPLC studies confirm ligand cleavage at very high protein concentrations, they indicate that hydrolysis does not occur under physiological concentrations. Taken together, these analogs confirm that the “northern” ribose is critical for CD38 activity and inhibition, provide new insight into the mechanism of cADPR hydrolysis by CD38, and may aid future inhibitor design

    Trigger for group A streptococcal M1T1 invasive disease

    Full text link
    The globally disseminated Streptococcus pyogenes M1T1 clone causes a number of highly invasive human diseases. The transition from local to systemic infection occurs by an unknown mechanism; however invasive M1T1 clinical isolates are known to express significantly less cysteine protease SpeB than M1T1 isolates from local infections. Here, we show that in comparison to the M1T1 strain 5448, the isogenic mutant ΔspeB accumulated 75‐fold more human plasmin activity on the bacterial surface following incubation in human plasma. Human plasminogen was an absolute requirement for M1T1 strain 5448 virulence following subcutaneous (s.c.) infection of humanized plasminogen transgenic mice. S. pyogenes M1T1 isolates from the blood of infected humanized plasminogen transgenic mice expressed reduced levels of SpeB in comparison with the parental 5448 used as inoculum. We propose that the human plasminogen system plays a critical role in group A streptococcal M1T1 systemic disease initiation. SpeB is required for S. pyogenes M1T1 survival at the site of local infection, however, SpeB also disrupts the interaction of S. pyogenes M1T1 with the human plasminogen activation system. Loss of SpeB activity in a subpopulation of S. pyogenes M1T1 at the site of infection results in accumulation of surface plasmin activity thus triggering systemic spread.—Cole, J. N., McArthur, J. D., McKay, F. C., Sanderson‐Smith, M. L., Cork, A. J., Ranson, M., Rohde, M., Itzek, A., Sun, H., Ginsburg, D., Kotb, M., Nizet, V., Chhatwal, G. S., Walker, M. J. Trigger for group A streptococcal M1T1 invasive disease. FASEB J. 20, E1139–E1145 (2006)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154248/1/fsb2fj065804fje.pd

    Chemiluminescence determination of surfactant Triton X-100 in environmental water with luminol-hydrogen peroxide system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid, simple determination of surfactants in environmental samples is essential because of the extensive use and its potential as contaminants. We describe a simple, rapid chemiluminescence method for the direct determination of the non-ionic surfactant Triton X-100 (polyethylene glycol tert-octylphenyl ether) in environmental water samples. The optimized experimental conditions were selected, and the mechanism of the Luminol-H<sub>2</sub>O<sub>2</sub>-Triton X-100 chemiluminesence system was also studied.</p> <p>Results</p> <p>The novel chemiluminescence method for the determination of non-ionic surfactant Triton X-100 was based on the phenomenon that Triton X-100 greatly enhanced the CL signal of the luminol-H<sub>2</sub>O<sub>2 </sub>system. The alkaline medium of luminol and the pH value obviously affected the results. Luminol concentration and hydrogen peroxide concentration also affected the results. The optimal conditions were: Na<sub>2</sub>CO<sub>3 </sub>being the medium, pH value 12.5, luminol concentration 1.0 × 10<sup>-4 </sup>mol L<sup>-1</sup>, H<sub>2</sub>O<sub>2 </sub>concentration 0.4 mol L<sup>-1</sup>. The possible mechanism was studied and proposed.</p> <p>Conclusion</p> <p>Under the optimal conditions, the standard curve was drawn up and quotas were evaluated. The linear range was 2 × 10<sup>-4 </sup>g·mL<sup>-1</sup>-4 × 10<sup>-2 </sup>g·mL<sup>-1 </sup>(w/v), and the detection limit was 3.97 × 10<sup>-5 </sup>g·mL<sup>-1 </sup>Triton X-100 (w/v). The relative standard deviation was less than 4.73% for 2 × 10<sup>-2 </sup>g·mL<sup>-1 </sup>(w/v) Triton X-100 (n = 7). This method has been applied to the determination of Triton X-100 in environmental water samples. The desirable recovery ratio was between 96%–102% and the relative standard deviation was 2.5%–3.3%. The luminescence mechanism was also discussed in detail based on the fluorescence spectrum and the kinetic curve, and demonstrated that Triton X-100-luminol-H<sub>2</sub>O<sub>2 </sub>was a rapid reaction.</p

    Anti-MUC1 Monoclonal Antibody (C595) and Docetaxel Markedly Reduce Tumor Burden and Ascites, and Prolong Survival in an in vivo Ovarian Cancer Model

    Get PDF
    MUC1 is associated with cellular transformation and tumorigenicity and is considered as an important tumor-associated antigen (TAA) for cancer therapy. We previously reported that anti-MUC1 monoclonal antibody C595 (MAb C595) plus docetaxel (DTX) increased efficacy of DTX alone and caused cultured human epithelial ovarian cancer (EOC) cells to undergo apoptosis. To further study the mechanisms of this combination-mediated apoptosis, we investigated the effectiveness of this combination therapy in vivo in an intraperitoneal (i.p.) EOC mouse model. OVCAR-3 cells were implanted intraperitoneally in female athymic nude mice and allowed to grow tumor and ascites. Mice were then treated with single MAb C595, DTX, combination test (MAb C595 and DTX), combination control (negative MAb IgG3 and DTX) or vehicle control i.p for 3 weeks. Treated mice were killed 4 weeks post-treatment. Ascites volume, tumor weight, CA125 levels from ascites and survival of animals were assessed. The expression of MUC1, CD31, Ki-67, TUNEL and apoptotic proteins in tumor xenografts was evaluated by immunohistochemistry. MAb C595 alone inhibited i.p. tumor growth and ascites production in a dose-dependent manner but did not obviously prevent tumor development. However, combination test significantly reduced ascites volume, tumor growth and metastases, CA125 levels in ascites and improved survival of treated mice compared with single agent-treated mice, combination control or vehicle control-treated mice (P<0.05). The data was in a good agreement with that from cultured cells in vitro. The mechanisms behind the observed effects could be through targeting MUC1 antigens, inhibition of tumor angiogenesis, and induction of apoptosis. Our results suggest that this combination approach can effectively reduce tumor burden and ascites, prolong survival of animals through induction of tumor apoptosis and necrosis, and may provide a potential therapy for advanced metastatic EOC

    Big GABA II:Water-referenced edited MR spectroscopy at 25 research sites

    Get PDF
    Accurate and reliable quantification of brain metabolites measured in vivo using H-1 magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited gamma-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using GABA+ (GABA + co-edited macromolecules (MM)) and MM-suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concentration referencing. Whole-brain T-1-weighted structural images were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17% for the GABA + data and 29% for the MM-suppressed GABA data. The mean within-site coefficient of variation was 10% for the GABA + data and 19% for the MM-suppressed GABA data. Vendor differences contributed 53% to the total variance in the GABA + data, while the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels.</p
    corecore