94 research outputs found
A 3′ UTR SNP in COL18A1 Is Associated with Susceptibility to HBV Related Hepatocellular Carcinoma in Chinese: Three Independent Case-Control Studies
BACKGROUND: Accumulated evidences indicate that single nucleotide polymorphisms (SNP) in angiogenesis and tumorigenesis related genes are associated with risk of Hepatocellular carcinoma (HCC). COL18A1 encodes the precursor of endostatin, which is a broad-spectrum angiogenesis inhibitor, and we speculate that SNPs in COL18A1 may be associated with susceptibility to HCC. METHODS AND FINDINGS: We carried out a 2-stage association study in 3 independent case-control groups in a total of 1067 chronic hepatitis B (CHB) patients and 808 hepatitis B virus (HBV) related HCC patients in Han Chinese. Four SNPs which can represent all potential functional SNPs with MAF>0.1 recorded in HapMap database were genotyped using TaqMan methods. Levels of total COL18A1 mRNA were also examined using quantitative real-time RT-PCR. We found that rs7499 located in 3'-UTR to be strongly associated with HBV related HCC (P(combined) = 0.0000005, OR = 0.72, 95%CI = 0.63-0.82). COL18A1 mRNA expression was significantly decreased as the disease progressed (P = 0.000026). CONCLUSION: These findings indicate that COL18A1 rs7499 may contribute to the risk of HCC in Han Chinese
Collaborative environment for energy-efficient buildings at an early design stage
This paper provides an approach for creating a collaborative environment for energy efficient buildings highlighting the issues required to be addressed at an early design phase. The paper will discuss a design scenario for a new built and suggest system architecture for implementing such scenario through the use of advanced simulation tools and modelling techniques to improve current practice in an early design phase. The suggested system architecture will allow multi-disciplinary teams to collectively and individually explore various energy solutions in a 3D interactive workspace to achieve optimum energy efficiency at building level
Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus
Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya
Coordination of care in the Chinese health care systems: a gap analysis of service delivery from a provider perspective
e0076 Screening oxidative stress associated genes by GeneChip on peripheral blood mononuclear cells in patients with acute myocardial infarction
Childhood lead poisoning from domestic products in China: A case study with implications for practice, education, and policy
Quantitation of parvalbumin+ neurons and human immunodeficiency virus type 1 (HIV-1) regulatory gene expression in the HIV-1 transgenic rat: effects of vitamin A deficiency and morphine
Longitudinal association of cytokine-producing CMV-specific T cells with frailty in HIV-infected and -uninfected men who have sex with men
Abstract
Background
Chronic cytomegalovirus (CMV) infection has been postulated as a driver of chronic inflammation that has been associated with frailty and other age-related conditions in both HIV-infected (HIV+) and -uninfected (HIV-) people.
Methods
To study the T cell response to CMV as a predictor of onset and maintenance of frailty, baseline CMV-specific T cell responses of 42 men (20 HIV-, 22 HIV+; 21 frail, 21 nonfrail) in the Multicenter AIDS Cohort Study (MACS) were assessed by flow cytometric analysis of cytokine production (IFN-γ, TNF-⍺, and IL-2) in response to overlapping peptide pools spanning 19 CMV open reading frames. The Fried frailty phenotype was assessed at baseline and semiannually thereafter. Times to transition into or out of frailty were compared by tertiles of percentages of cytokine-producing T cells using Kaplan-Meier estimators and the exact log-rank test.
Results
Over a median follow-up of 6.5 (interquartile range: 2) years, faster onset of frailty was significantly predicted by higher (HIV- men) or lower (HIV+ men) percentages of CD4 T cells producing only IFN-γ (IFN-γ-single-producing (SP)), and by lower percentages of IFN-γ-, TNF-⍺-, and IL-2-triple-producing CD8 T cells (HIV- men). Greater maintenance of frailty was significantly predicted by lower percentages of both these T cell subsets in HIV- men, and by lower percentages of IFN-γ-SP CD4 T cells in HIV+ men. The antigenic specificity of IFN-γ-SP CD4 T cells was different between HIV- and HIV+ nonfrail men, as were the correlations between these cells and serum inflammatory markers.
Conclusions
In this pilot study, percentages of CMV-specific T cells predicted the onset and maintenance of frailty in HIV- and HIV+ men. Predictive responses differed by HIV status, which may relate to differential control of CMV reactivation and inflammation by anti-CMV T cell responses.
</jats:sec
Anthracycline Chemotherapy in Treatuing Advanced Breast Cancer and its effect on Estradiol and Tumor Size
A conserved haem redox and trafficking pathway for cofactor attachment
A pathway for cytochrome c maturation (Ccm) in bacteria, archaea and eukaryotes (mitochondria) requires the genes encoding eight membrane proteins (CcmABCDEFGH). The CcmABCDE proteins are proposed to traffic haem to the cytochrome c synthetase (CcmF/H) for covalent attachment to cytochrome c by unknown mechanisms. For the first time, we purify pathway complexes with trapped haem to elucidate the molecular mechanisms of haem binding, trafficking and redox control. We discovered an early step in trafficking that involves oxidation of haem (to Fe3+), yet the final attachment requires reduced haem (Fe2+). Surprisingly, CcmF is a cytochrome b with a haem never before realized, and in vitro, CcmF functions as a quinol:haem oxidoreductase. Thus, this ancient pathway has conserved and orchestrated mechanisms for trafficking, storing and reducing haem, which assure its use for cytochrome c synthesis even in limiting haem (iron) environments and reducing haem in oxidizing environments
- …
