166 research outputs found
Search for pulsations at high radio frequencies from accreting millisecond X-ray pulsars in quiescence
It is commonly believed that millisecond radio pulsars have been spun up by
transfer of matter and angular momentum from a low-mass companion during an
X-ray active mass transfer phase. A subclass of low-mass X-ray binaries is that
of the accreting millisecond X-ray pulsars, transient systems that show periods
of X-ray quiescence during which radio emission could switch on. The aim of
this work is to search for millisecond pulsations from three accreting
millisecond X-ray pulsars, XTE J1751-305, XTE J1814-338, and SAX J1808.4-3658,
observed during their quiescent X-ray phases at high radio frequencies (5 - 8
GHz) in order to overcome the problem of the free-free absorption due to the
matter engulfing the system. A positive result would provide definite proof of
the recycling model, providing the direct link between the progenitors and
their evolutionary products. The data analysis methodology has been chosen on
the basis of the precise knowledge of orbital and spin parameters from X-ray
observations. It is subdivided in three steps: we corrected the time series for
the effects of (I) the dispersion due to interstellar medium and (II) of the
orbital motions, and finally (III) folded modulo the spin period to increase
the signal-to-noise ratio. No radio signal with spin and orbital
characteristics matching those of the X-ray sources has been found in our
search, down to very low flux density upper limits. We analysed several
mechanisms that could have prevented the detection of the signal, concluding
that the low luminosity of the sources and the geometric factor are the most
likely reasons for this negative result.Comment: 5 pages, 3 figures. Accepted for publication by A&
Searching for pulsed emission from XTE J0929-314 at high radio frequencies
The aim of this work is to search for radio signals in the quiescent phase of
accreting millisecond X-ray pulsars, in this way giving an ultimate proof of
the recycling model, thereby unambiguously establishing that accreting
millisecond X-ray pulsars are the progenitors of radio millisecond pulsars.
To overcome the possible free-free absorption caused by matter surrounding
accreting millisecond X-ray pulsars in their quiescence phase, we performed the
observations at high frequencies. Making use of particularly precise orbital
and spin parameters obtained from X-ray observations, we carried out a deep
search for radio-pulsed emission from the accreting millisecond X-ray pulsar
XTE J0929-314 in three steps, correcting for the effect of the dispersion due
to the interstellar medium, eliminating the orbital motions effects, and
finally folding the time series.
No radio pulsation is present in the analyzed data down to a limit of 68
microJy at 6.4 GHz and 26 microJy at 8.5 GHz.
We discuss several mechanisms that could prevent the detection, concluding
that beaming factor and intrinsic low luminosity are the most likely
explanations.Comment: 7 pages, 4 figures. Accepted for publication in Astronomy &
Astrophysic
The optical counterparts of Accreting Millisecond X-Ray Pulsars during quiescence
Eight Accreting Millisecond X-ray Pulsars (AMXPs) are known to date. Optical
and NIR observations carried out during quiescence give a unique opportunity to
constrain the nature of the donor star and to investigate the origin of the
observed quiescent luminosity at long wavelengths. Using data obtained with the
ESO-Very Large Telescope, we performed a deep optical and NIR photometric study
of the fields of XTE J1814-338 and of the ultracompact systems XTE J0929-314
and XTE J1807-294 during quiescence in order to look for the presence of a
variable counterpart. If suitable candidates were found, we also carried out
optical spectroscopy. We present here the first multi-band (VR) detection of
the optical counterpart of XTE J1814-338 in quiescence together with its
optical spectrum. The optical light curve shows variability in both bands
consistent with a sinusoidal modulation at the known 4.3 hr orbital period and
presents a puzzling decrease of the V-band flux around superior conjunction
that may be interpreted as a partial eclipse. The marginal detection of the
very faint counterpart of XTE J0929-314 and deep upper limits for the
optical/NIR counterpart of XTE J1807-294 are also reported. We also briefly
discuss the results reported in the literature for the optical/NIR counterpart
of XTE J1751-305. Our findings are consistent with AMXPs being systems
containing an old, weakly magnetized neutron star, reactivated as a millisecond
radio pulsar during quiescence which irradiates the low-mass companion star.
The absence of type I X-ray bursts and of hydrogen and helium lines in outburst
spectra of ultracompact (P_orb < 1 hr) AMXPs suggests that the companion stars
are likely evolved dwarf stars.Comment: Accepted for publication by A&A; 12 pages, 12 figure
Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz
Observations of supernova remnants (SNRs) are a powerful tool for
investigating the later stages of stellar evolution, the properties of the
ambient interstellar medium, and the physics of particle acceleration and
shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra
high-energies has been provided, constraining their contributions to the
production of Galactic cosmic rays. Although radio emission is the most common
identifier of SNRs and a prime probe for refining models, high-resolution
images at frequencies above 5 GHz are surprisingly lacking, even for bright and
well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical
Validation and Early Science Program with the 64-m single-dish Sardinia Radio
Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz
of the IC443 and W44 complexes coupled with spatially-resolved spectra in the
1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping
techniques, providing antenna beam oversampling and resulting in accurate
continuum flux density measurements. The integrated flux densities associated
with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we
measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4
Jy. Spectral index maps provide evidence of a wide physical parameter scatter
among different SNR regions: a flat spectrum is observed from the brightest SNR
regions at the shock, while steeper spectral indices (up to 0.7) are observed
in fainter cooling regions, disentangling in this way different populations and
spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201
eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants
With an accelerating negative impact of anthropogenic actions on natural ecosystems, non-invasive biodiversity assessments are becoming increasingly crucial. As a consequence, the interest in the application of environmental DNA (eDNA) survey techniques has increased. The use of eDNA extracted from faeces from generalist predators, have recently been described as “biodiversity capsules” and suggested as a complementary tool for improving current biodiversity assessments. In this study, using faecal samples from two generalist omnivore species, the Eurasian badger and the red fox, we evaluated the applicability of eDNA metabarcoding in determining dietary composition, compared to macroscopic diet identification techniques. Subsequently, we used the dietary information obtained to assess its contribution to biodiversity assessments. Compared to classic macroscopic techniques, we found that eDNA metabarcoding detected more taxa, at higher taxonomic resolution, and proved to be an important technique to verify the species identification of the predator from field collected faeces. Furthermore, we showed how dietary analyses complemented field observations in describing biodiversity by identifying consumed flora and fauna that went unnoticed during field observations. While diet analysis approaches could not substitute field observations entirely, we suggest that their integration with other methods might overcome intrinsic limitations of single techniques in future biodiversity surveys
Accreting Millisecond X-Ray Pulsars
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories
without parallel in the study of extreme physics. In this chapter we review the
past fifteen years of discoveries in the field. We summarize the observations
of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength
observations that have been carried out since the discovery of the first AMXP
in 1998. We review accretion torque theory, the pulse formation process, and
how AMXP observations have changed our view on the interaction of plasma and
magnetic fields in strong gravity. We also explain how the AMXPs have deepened
our understanding of the thermonuclear burst process, in particular the
phenomenon of burst oscillations. We conclude with a discussion of the open
problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations
and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer;
[revision with literature updated, several typos removed, 1 new AMXP added
Main roads and land cover shaped the genetic structure of a Mediterranean island wild boar population
Patterns of genetic differentiation within and among animal populations might vary due to the simple effect of distance or landscape features hindering gene flow. An assessment of how landscape connectivity affects gene flow can help guide man -agement, especially in fragmented landscapes. Our objective was to analyze popu-lation genetic structure and landscape genetics of the native wild boar (Sus scrofa meridionalis) population inhabiting the island of Sardinia (Italy), and test for the ex -istence of Isolation- by- Distance (IBD), Isolation- by- Barrier (IBB), and Isolation- by- Resistance (IBR). A total of 393 Sardinian wild boar samples were analyzed using a set of 16 microsatellite loci. Signals of genetic introgression from introduced non- native wild boars or from domestic pigs were revealed by a Bayesian cluster analysis includ -ing 250 reference individuals belonging to European wild populations and domestic breeds. After removal of introgressed individuals, genetic structure in the popula -tion was investigated by different statistical approaches, supporting a partition into five discrete subpopulations, corresponding to five geographic areas on the island: north- west (NW), central west (CW), south- west (SW), north- central east (NCE), and south- east (SE). To test the IBD, IBB, and IBR hypotheses, we optimized resistance surfaces using genetic algorithms and linear mixed- effects models with a maximumlikelihood population effects parameterization. Landscape genetics analyses revealedthat genetic discontinuities between subpopulations can be explained by landscape elements, suggesting that main roads, urban settings, and intensively cultivated areas are hampering gene flow (and thus individual movements) within the Sardinian wild boar population. Our results reveal how human-transformed landscapes can affect genetic connectivity even in a large-sized and highly mobile mammal such as the wild boar, and provide crucial information to manage the spread of pathogens, including the African Swine Fever virus, endemic in Sardinia
Genetic variability of the grey wolf Canis lupus in the Caucasus in comparison with Europe and the Middle East: distinct or intermediary population?
Despite continuous historical distribution of the grey wolf (Canis lupus) throughout Eurasia, the species displays considerable morphological differentiation that resulted in delimitation of a number of subspecies. However, these morphological discontinuities are not always consistent with patterns of genetic differentiation. Here we assess genetic distinctiveness of grey wolves from the Caucasus (a region at the border between Europe and West Asia) that have been classified as a distinct subspecies C. l. cubanensis. We analysed their genetic variability based on mtDNA control region, microsatellite loci and genome-wide SNP genotypes (obtained for a subset of the samples), and found similar or higher levels of genetic diversity at all these types of loci as compared with other Eurasian populations. Although we found no evidence for a recent genetic bottleneck, genome-wide linkage disequilibrium patterns suggest a long-term demographic decline in the Caucasian population – a trend consistent with other Eurasian populations. Caucasian wolves share mtDNA haplotypes with both Eastern European and West Asian wolves, suggesting past or ongoing gene flow. Microsatellite data also suggest gene flow between the Caucasus and Eastern Europe. We found evidence for moderate admixture between the Caucasian wolves and domestic dogs, at a level comparable with other Eurasian populations. Taken together, our results show that Caucasian wolves are not genetically isolated from other Eurasian populations, share with them the same demographic trends, and are affected by similar conservation problems
The IGF1 small dog haplotype is derived from Middle Eastern grey wolves: a closer look at statistics, sampling, and the alleged Middle Eastern origin of small dogs
This paper is a response to Gray MM, Sutter NB, Ostrander EA, Wayne RK: The IGF1 small dog haplotype is derived from Middle Eastern grey wolves. BMC Biology 2010, 8:16
Past, present and future of chamois science
The chamois Rupicapra spp. is the most abundant mountain ungulate of Europe and the Near East, where it occurs as two spe- cies, the northern chamois R. rupicapra and the southern chamois R. pyrenaica. Here, we provide a state-of-the-art overview of research trends and the most challenging issues in chamois research and conservation, focusing on taxonomy and systematics, genetics, life history, ecology and behavior, physiology and disease, management and conservation. Research on Rupicapra has a longstanding history and has contributed substantially to the biological and ecological knowledge of mountain ungulates. Although the number of publications on this genus has markedly increased over the past two decades, major differences persist with respect to knowledge of species and subspecies, with research mostly focusing on the Alpine chamois R. r. rupicapra and, to a lesser extent, the Pyrenean chamois R. p. pyrenaica. In addition, a scarcity of replicate studies of populations of different subspecies and/or geographic areas limits the advancement of chamois science. Since environmental heterogeneity impacts behavioral, physiological and life history traits, understanding the underlying processes would be of great value from both an evolutionary and conservation/management standpoint, especially in the light of ongoing climatic change. Substantial contri- butions to this challenge may derive from a quantitative assessment of reproductive success, investigation of fine-scale foraging patterns, and a mechanistic understanding of disease outbreak and resilience. For improving conservation status, resolving taxonomic disputes, identifying subspecies hybridization, assessing the impact of hunting and establishing reliable methods of abundance estimation are of primary concern. Despite being one of the most well-known mountain ungulates, substantial field efforts to collect paleontological, behavioral, ecological, morphological, physiological and genetic data on different popu- lations and subspecies are still needed to ensure a successful future for chamois research and conservation
- …
