1,082 research outputs found
The BMV experiment : a novel apparatus to study the propagation of light in a transverse magnetic field
In this paper, we describe in detail the BMV (Bir\'efringence Magn\'etique du
Vide) experiment, a novel apparatus to study the propagation of light in a
transverse magnetic field. It is based on a very high finesse Fabry-Perot
cavity and on pulsed magnets specially designed for this purpose. We justify
our technical choices and we present the current status and perspectives.Comment: To be published in the European Physical Journal
Light propagation in non-trivial QED vacua
Within the framework of effective action QED, we derive the light cone
condition for homogeneous non-trivial QED vacua in the geometric optics
approximation. Our result generalizes the ``unified formula'' suggested by
Latorre, Pascual and Tarrach and allows for the calculation of velocity shifts
and refractive indices for soft photons travelling through these vacua.
Furthermore, we clarify the connection between the light velocity shift and the
scale anomaly. This study motivates the introduction of a so-called effective
action charge that characterizes the velocity modifying properties of the
vacuum. Several applications are given concerning vacuum modifications caused
by, e.g., strong fields, Casimir systems and high temperature.Comment: 13 pages, REVTeX, 3 figures, to appear in Phys. Rev.
Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas
Low energy non linear QED effects in vacuum have been predicted since 1936
and have been subject of research for many decades. Two main schemes have been
proposed for such a 'first' detection: measurements of ellipticity acquired by
a linearly polarized beam of light passing through a magnetic field and direct
light-light scattering. The study of the propagation of light through an
external field can also be used to probe for new physics such as the existence
of axion-like particles and millicharged particles. Their existence in nature
would cause the index of refraction of vacuum to be different from unity in the
presence of an external field and dependent of the polarization direction of
the light propagating. The major achievement of reaching the project
sensitivities in gravitational wave interferometers such as LIGO an VIRGO has
opened the possibility of using such instruments for the detection of QED
corrections in electrodynamics and for probing new physics at very low
energies. In this paper we discuss the difference between direct birefringence
measurements and index of refraction measurements. We propose an almost
parasitic implementation of an external magnetic field along the arms of the
VIRGO interferometer and discuss the advantage of this choice in comparison to
a previously proposed configuration based on shorter prototype interferometers
which we believe is inadequate. Considering the design sensitivity in the
strain, for the near future VIRGO+ interferometer, of in the range 40 Hz Hz leads to a variable
dipole magnet configuration at a frequency above 20 Hz such that Tm/ for a `first' vacuum non linear QED detection
Proper Scoring Rules for Evaluating Density Forecasts with Asymmetric Loss Functions
This article proposes a novel asymmetric continuous probabilistic score (ACPS) for evaluating and comparing density forecasts. It generalizes the proposed score and defines a weighted version, which emphasizes regions of interest, such as the tails or the center of a variable’s range. The (weighted) ACPS extends the symmetric (weighted) CRPS by allowing for asymmetries in the preferences underlying the scoring rule. A test is used to statistically compare the predictive ability of different forecasts. The ACPS is of general use in any situation where the decision-maker has asymmetric preferences in the evaluation of the forecasts. In an artificial experiment, the implications of varying the level of asymmetry in the ACPS are illustrated. Then, the proposed score and test are applied to assess and compare density forecasts of macroeconomic relevant datasets (U.S. employment growth) and of commodity prices (oil and electricity prices) with particular focus on the recent COVID-19 crisis period
Casimir forces and non-Newtonian gravitation
The search for non-relativistic deviations from Newtonian gravitation can
lead to new phenomena signalling the unification of gravity with the other
fundamental interactions. Various recent theoretical frameworks indicate a
possible window for non-Newtonian forces with gravitational coupling strength
in the micrometre range. The major expected background in the same range is
attributable to the Casimir force or variants of it if dielectric materials,
rather than conducting ones, are considered. Here we review the measurements of
the Casimir force performed so far in the micrometre range and how they
determine constraints on non-Newtonian gravitation, also discussing the
dominant sources of false signals. We also propose a geometry-independent
parameterization of all data in terms of the measurement of the constant c. Any
Casimir force measurement should lead, once all corrections are taken into
account, to a determination of the constant c which, in order to assess the
accuracy of the measurement, can be compared with its more precise value known
through microscopic measurements. Although the last decade of experiments has
resulted in solid demonstrations of the Casimir force, the situation is not
conclusive with respect to being able to discover new physics. Future
experiments and novel phenomenological analysis will be necessary to discover
non-Newtonian forces or to push the window for their possible existence into
regions of the parameter space which theoretically appear unnatural.Comment: Also available at http://www.iop.org/EJ/abstract/1367-2630/8/10/23
Production and detection of relic gravitons in quintessential inflationary models
A large class of quintessential inflationary models, recently proposed by
Peebles and Vilenkin, leads to post-inflationary phases whose effective
equation of state is stiffer than radiation. The expected gravitational waves
logarithmic energy spectra are tilted towards high frequencies and
characterized by two parameters: the inflationary curvature scale at which the
transition to the stiff phase occurs and the number of (non conformally
coupled) scalar degrees of freedom whose decay into fermions triggers the onset
of a gravitational reheating of the Universe. Depending upon the parameters of
the model and upon the different inflationary dynamics (prior to the onset of
the stiff evolution) the relic gravitons energy density can be much more
sizeable than in standard inflationary models, for frequencies larger than 1
Hz. We estimate the required sensitivity for detection of the predicted
spectral amplitude and show that the allowed region of our parameter space
leads to a signal smaller (by one 1.5 orders of magnitude) than the advanced
LIGO sensitivity at a frequency of 0.1 KHz. The maximal signal, in our context,
is expected in the GHz region where the energy density of relic gravitons in
critical units (i.e. ) is of the order of , roughly
eight orders of magnitude larger than in ordinary inflationary models. Smaller
detectors (not necessarily interferometers) can be relevant for detection
purposes in the GHz frequency window. We suggest/speculate that future
measurements through microwave cavities can offer interesting perspectives.Comment: 24 pages in Revtex style, 7 figure
Measurement of the branching ratio of the decay
From the 2002 data taking with a neutral kaon beam extracted from the
CERN-SPS, the NA48/1 experiment observed 97 candidates with a background contamination of events.
From this sample, the BR() is measured to be
Recent NA48/2 and NA62 results
The NA48/2 Collaboration at CERN has accumulated and analysed unprecedented
statistics of rare kaon decays in the modes: () and ()
with nearly one percent background contamination. It leads to the improved
measurement of branching fractions and detailed form factor studies. New final
results from the analysis of 381 rare decay
candidates collected by the NA48/2 and NA62 experiments at CERN are presented.
The results include a decay rate measurement and fits to Chiral Perturbation
Theory (ChPT) description.Comment: Prepared for the Proceedings of "Moriond QCD and High Energy
Interactions. March 22-29 2014." conferenc
Measurement of K^0_e3 form factors
The semileptonic decay of the neutral K meson, KL -> pi e nu (Ke3), was used
to study the strangeness-changing weak interaction of hadrons. A sample of 5.6
million reconstructed events recorded by the NA48 experiment was used to
measure the Dalitz plot density. Admitting all possible Lorentz-covariant
couplings, the form factors for vector (f_+(q^2)), scalar (f_S) and tensor
(f_T) interactions were measured. The linear slope of the vector form factor
lambda_+ = 0.0284+-0.0007+-0.0013 and values for the ratios |f_S/f_+(0)| =
0.015^{+0.007}_{-0.010}+-0.012 and |f_T/f_+(0)| = 0.05^{+0.03}_{-0.04}+-0.03
were obtained. The values for f_S and f_T are consistent with zero. Assuming
only Vector-Axial vector couplings, lambda_+ = 0.0288+-0.0004+-0.0011 and a
good fit consistent with pure V-A couplings were obtained. Alternatively, a fit
to a dipole form factor yields a pole mass of M = 859+-18 MeV, consistent with
the K^*(892) mass.Comment: 16 pages, 7 figures. submitted to Phys. Lett.
Bayesian Partial Reduced-Rank Regression
Reduced-rank (RR) regression may be interpreted as a dimensionality reduction technique able to reveal complex relationships among the data parsimoniously. However, RR regression models typically overlook any potential group structure among the responses by assuming a low-rank structure on the coefficient matrix. To address this limitation, a Bayesian Partial RR (BPRR) regression is exploited, where the response vector and the coefficient matrix are partitioned into low- and full-rank sub-groups. As opposed to the literature, which assumes known group structure and rank, a novel strategy is introduced that treats them as unknown parameters to be estimated.
The main contribution is two-fold: an approach to infer the low- and full-rank group memberships from the data is proposed, and then, conditionally on this allocation, the corresponding (reduced) rank is estimated. Both steps are carried out in a Bayesian approach, allowing for full uncertainty quantification and based on a partially collapsed Gibbs sampler. It relies on a Laplace approximation of the marginal likelihood and the Metropolized Shotgun Stochastic Search to estimate the group allocation efficiently. Applications to synthetic and real-world data reveal the potential of the proposed method to reveal hidden structures in the data
- …
