296 research outputs found
The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase
delta-Aminolevulinic acid (ALA), the first committed precursor of porphyrin biosynthesis, is formed in Escherichia coli by the C5 pathway in a three-step, tRNA-dependent transformation from glutamate. The first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase, are known in E. coli (J. Lapointe and D. Söll, J. Biol. Chem. 247:4966-4974, 1972; D. Jahn, U. Michelsen, and D. Söll, J. Biol. Chem. 266:2542-2548, 1991). Here we present the mapping and cloning of the gene for the third enzyme, glutamate 1-semialdehyde (GSA) aminotransferase, and an initial characterization of the purified enzyme. Ethylmethane sulfonate-induced mutants of E. coli AB354 which required ALA for growth were isolated by selection for respiration-defective strains resistant to the aminoglycoside antibiotic kanamycin. Two mutations were mapped to min 4 at a locus named hemL. Map positions and resulting phenotypes suggest that hemL may be identical with the earlier described porphyrin biosynthesis mutation popC. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding clone pLC4-43 of the Clarke-Carbon bank (L. Clarke and J. Carbon, Cell 9:91-99, 1976) allowed the isolation of the gene. Physical mapping showed that hemL mapped clockwise next to fhuB. The hemL gene product was overexpressed and purified to apparent homogeneity. The pure protein efficiently converted GSA to ALA. The reaction was stimulated by the addition of pyridoxal 5' -phosphate or pyridoxamine 5' -phosphate and inhibited by gabaculine or aminooxyacetic acid. The molecular mass of the purified GSA aminotransferase under denaturing conditions was 40,000 Da, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has apparent native molecular mass of approximately 80,000 Da, as determined by rate zonal sedimentation on glycerol gradients and molecular sieving through Superose 12, which indicates a homodimeric alpha2, structure of the protein.</jats:p
Characteristics of insulin-Naïve people with type 2 diabetes who successfully respond to insulin glargine U100 after 24 weeks of treatment: a meta-analysis of individual participant data from 3 randomized clinical trials
Abstract
Background
To identify baseline/clinical characteristics associated with clinically meaningful responses to insulin glargine 100 U/mL (IGlar) in insulin-naive people with type 2 diabetes mellitus (T2DM).
Methods
Individual participant data were pooled from 3 randomized trials to compare baseline characteristics and clinical outcomes associated with 24-week response to IGlar in combination with non-insulin antihyperglycemic agents in participants with T2DM. Responders were defined as achieving endpoint HbA1c target < 53 mmol/mol (< 7%) and/or ≥ 11 mmol/mol (≥ 1%) HbA1c reduction from baseline.
Results
Differences in baseline characteristics for responders versus nonresponders were higher HbA1c (99 vs 91 mmol/mol [9.1 vs 8.3%]; P < 0.001), higher fasting blood glucose (FBG; 10.4 vs 8.8 mmol/L [187 vs 159 mg/dL; P < 0.001), and fewer participants (94% vs 98%; P = 0.006) taking oral medications targeting postprandial blood glucose (BG). Most participants (80%) achieved one or both components of composite endpoint. 12-week response was a strong predictor of subsequent 24-week response (sensitivity, 85.9%; predictive positive value, 91.4%). At both 12 and 24 weeks, < 40% of responders and nonresponders reached target FBG ≤ 5.6 mmol/L (≤ 100 mg/dL). Responders at 24 weeks had higher incidence of hypoglycemia (total, 82.5% vs 70.4%; P < 0.001; nocturnal, 60.3% vs 50.5%; P = 0.002; documented symptomatic, 65.8% vs 55.6%; P < 0.001) than nonresponders.
Conclusions
Baseline characteristics associated with response were identified. The strong predictability of 12-week response suggests that the magnitude of early HbA1c reduction should be considered when assessing response to IGlar. More aggressive IGlar titration may be reasonable for nonresponders and responders who have not reached FBG and HbA1c targets, taking into account other BG timepoints.https://deepblue.lib.umich.edu/bitstream/2027.42/143541/1/40842_2018_Article_59.pd
Туров и его историко-культурное наследие
Материалы IV Республик. науч. конф. студентов, магистрантов и аспирантов, Гомель, 12 мая 2011 г
Novel sample-substrates for the determination of new psychoactive substances in oral fluid by desorption electrospray ionization-high resolution mass spectrometry
A reliable screening and non invasive method based on the use of microextraction by packed sorbent coupled
with desorption electrospray ionization-high resolution mass spectrometry was developed and validated for the
detection of new psychoactive substances in oral fluid. The role of different sample substrates in enhancing
signal intensity and stability was evaluated by testing the performances of two polylactide-based materials, i.e.
non-functionalized and functionalized with carbon nanoparticles, and a silica-based material compared to
commercially available polytetrafluorethylene supports. The best results were achieved by using the nonfunctionalized
polylactide substrates to efficiently ionize compounds in positive ionization mode, whereas the
silica coating proved to be the best choice for operating in negative ionization mode. LLOQs in the low μg/L, a
good precision with CV% always lower than 16% and RR% in the 83(±4)-120(±2)% range, proved the
suitability of the developed method for the determination of the analytes in oral fluid. Finally, the method was
applied for screening oral fluid samples for the presence of psychoactive substances during private parties,
revealing mephedrone in only one sample out of 40 submitted to analysis
A collaborative evaluation of LC-MS/MS based methods for BMAA analysis: soluble bound BMAA found to be an important fraction.
Exposure to β-Ν-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%-32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery ( < 10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis
Structural Basis for Dityrosine-Mediated Inhibition of α-Synuclein Fibrillization
[Image: see text] α-Synuclein (α-Syn) is an intrinsically disordered protein which self-assembles into highly organized β-sheet structures that accumulate in plaques in brains of Parkinson’s disease patients. Oxidative stress influences α-Syn structure and self-assembly; however, the basis for this remains unclear. Here we characterize the chemical and physical effects of mild oxidation on monomeric α-Syn and its aggregation. Using a combination of biophysical methods, small-angle X-ray scattering, and native ion mobility mass spectrometry, we find that oxidation leads to formation of intramolecular dityrosine cross-linkages and a compaction of the α-Syn monomer by a factor of √2. Oxidation-induced compaction is shown to inhibit ordered self-assembly and amyloid formation by steric hindrance, suggesting an important role of mild oxidation in preventing amyloid formation
Durability of glycemic control with insulin lispro mix 75/25 versus insulin glargine for older patients with type 2 diabetes
CD155/PVR plays a key role in cell motility during tumor cell invasion and migration
BACKGROUND: Invasion is an important early step of cancer metastasis that is not well understood. Developing therapeutics to limit metastasis requires the identification and validation of candidate proteins necessary for invasion and migration. METHODS: We developed a functional proteomic screen to identify mediators of tumor cell invasion. This screen couples Fluorophore Assisted Light Inactivation (FALI) to a scFv antibody library to systematically inactivate surface proteins expressed by human fibrosarcoma cells followed by a high-throughput assessment of transwell invasion. RESULTS: Using this screen, we have identified CD155 (the poliovirus receptor) as a mediator of tumor cell invasion through its role in migration. Knockdown of CD155 by FALI or by RNAi resulted in a significant decrease in transwell migration of HT1080 fibrosarcoma cells towards a serum chemoattractant. CD155 was found to be highly expressed in multiple cancer cell lines and primary tumors including glioblastoma (GBM). Knockdown of CD155 also decreased migration of U87MG GBM cells. CD155 is recruited to the leading edge of migrating cells where it colocalizes with actin and αv-integrin, known mediators of motility and adhesion. Knockdown of CD155 also altered cellular morphology, resulting in cells that were larger and more elongated than controls when plated on a Matrigel substrate. CONCLUSION: These results implicate a role for CD155 in mediating tumor cell invasion and migration and suggest that CD155 may contribute to tumorigenesis
First-Step Mutations for Adaptation at Elevated Temperature Increase Capsid Stability in a Virus
The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing
- …
