6,548 research outputs found

    The flux ratio of the [OIII] 5007,4959 lines in AGN: Comparison with theoretical calculations

    Get PDF
    By taking into account relativistic corrections to the magnetic dipole operator, the theoretical [OIII] 5006.843/4958.511 line intensity ratio of 2.98 is obtained. In order to check this new value using AGN spectra we present the measurements of the flux ratio of the [OIII] 4959,5007 emission lines for a sample of 62 AGN, obtained from the Sloan Digital Sky Survey (SDSS) Database and from published observations. We select only high signal-to-noise ratio spectra for which the line shapes of the [OIII] 4959,5007 lines are the same. We obtained an averaged flux ratio of 2.993 +/- 0.014, which is in a good agreement with the theoretical one.Comment: Accepted for publication in the MNRA

    Development and validation of the ACE tool: Assessing medical trainees' competency in evidence based medicine

    Get PDF
    BACKGROUND: While a variety of instruments have been developed to assess knowledge and skills in evidence based medicine (EBM), few assess all aspects of EBM - including knowledge, skills attitudes and behaviour - or have been psychometrically evaluated. The aim of this study was to develop and validate an instrument that evaluates medical trainees’ competency in EBM across knowledge, skills and attitude. METHODS: The ‘Assessing Competency in EBM’ (ACE) tool was developed by the authors, with content and face validity assessed by expert opinion. A cross-sectional sample of 342 medical trainees representing ‘novice’, ‘intermediate’ and ‘advanced’ EBM trainees were recruited to complete the ACE tool. Construct validity, item difficulty, internal reliability and item discrimination were analysed. RESULTS: We recruited 98 EBM-novice, 108 EBM-intermediate and 136 EBM-advanced participants. A statistically significant difference in the total ACE score was observed and corresponded to the level of training: on a 0-15-point test, the mean ACE scores were 8.6 for EBM-novice; 9.5 for EBM-intermediate; and 10.4 for EBM-advanced (p < 0.0001). Individual item discrimination was excellent (Item Discrimination Index ranging from 0.37 to 0.84), with internal reliability consistent across all but three items (Item Total Correlations were all positive ranging from 0.14 to 0.20). CONCLUSION: The 15-item ACE tool is a reliable and valid instrument to assess medical trainees’ competency in EBM. The ACE tool provides a novel assessment that measures user performance across the four main steps of EBM. To provide a complete suite of instruments to assess EBM competency across various patient scenarios, future refinement of the ACE instrument should include further scenarios across harm, diagnosis and prognosis

    Long-term variability of the optical spectra of NGC 4151: II. Evolution of the broad Ha and Hb emission-line profiles

    Full text link
    Results of the long-term (11 years, from 1996 to 2006) Hα\alpha and Hβ\beta line variations of the active galactic nucleus of NGC 4151 are presented. High quality spectra (S/N>50 and R~8A) of Hα\alpha and Hβ\beta were investigated. We analyzed line profile variations during monitoring period. Comparing the line profiles of Hα\alpha and Hβ\beta, we studied different details (bumps, absorption features) in the line profiles. The variations of the different Hα\alpha and Hβ\beta line profile segments have been investigated. Also, we analyzed the Balmer decrement for whole line and for line segments. We found that the line profiles were strongly changing during the monitoring period, showing blue and red asymmetries. This indicates a complex BLR geometry of NGC 4151 with, at least, three kinematically distinct regions: one that contributes to the blue line wing, one to the line core and one to the red line wing. Such variation can be caused by an accelerating outflow starting very close to the black hole, where the red part may come from the region {closer to the black hole than the blue part, which is coming} from the region having the highest outflow velocities. Taking into account the fact that the BLR of NGC 4151 has a complex geometry (probably affected by an outflow) and that a portion of the broad line emission seems to have not a pure photoionization origin, one can ask the question whether the study of the BLR by reverberation mapping may be valid in the case of this galaxy.Comment: 24 pages, 18 figures, accepted for publications in A&

    Line shape variability in a sample of AGN with broad lines

    Full text link
    The spectral variability of active galactic nuclei (AGN) is one of their key features that enables us to study in more details the structure of AGN emitting regions. Especially, the broad line profiles, that vary both in flux and shape, give us invaluable information about the kinematics and geometry of the broad line region (BLR) where these lines are originating from. We give here a comparative review of the line shape variability in a sample of five type 1 AGN, those with broad emission lines in their spectra, of the data obtained from the international long-term optical monitoring campaign coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. The main aim of this campaign is to study the physics and kinematics of the BLR on a uniform data set, focusing on the problems of the photoionization heating of the BLR and its geometry, where in this paper we give for a first time a comparative analysis of the variabilty of five type 1 AGN, discussing their complex BLR physics and geometry in the framework of the estimates of the supermassive black hole mass in AGN.Comment: Accepted in Journal of Astrophysics and Astronomy, Springe

    Spectral monitoring of AGNs: Preliminary results for Ark 564 and Arp 102B

    Full text link
    We present preliminary results of the long term spectral monitoring of two active galactic nuclei with different broad line shapes: Ark 564 and Arp 102B. Ark 564 is a bright nearby narrow line Syfert 1 (NLS1) galaxy with relatively narrow permitted optical emission lines and a high FeII/Hβ{\beta} ratio, while Arp 102B is a nearby broad-line radio galaxy with broad double-peaked Balmer emission lines. The spectra of Ark 564 were observed during 11-year period (1999-2009) and the spectra of Arp 102B in the 12-year period (1998-2009), with SAO 6-m and 1-m telescopes (Russia) and the GHAO 2.1-m telescope (Cananea, Mexico).Comment: Presented on "8th Serbian Conference on Spectral Line Shapes in Astrophysics". In revised version minor changes in the tex

    Surfaces containing a family of plane curves not forming a fibration

    Full text link
    We complete the classification of smooth surfaces swept out by a 1-dimensional family of plane curves that do not form a fibration. As a consequence, we characterize manifolds swept out by a 1-dimensional family of hypersurfaces that do not form a fibration.Comment: Author's post-print, final version published online in Collect. Mat

    Spectral optical monitoring of the double peaked emission line AGN Arp 102B: II. Variability of the broad line properties

    Full text link
    We investigate a long-term (26 years, from 1987 to 2013) variability in the broad spectral line properties of the radio galaxy Arp 102B, an active galaxy with broad double-peaked emission lines. We use observations presented in Paper I (Shapovalova et al. 2013) in the period from 1987 to 2011, and a new set of observations performed in 2012--2013. To explore the BLR geometry, and clarify some contradictions about the nature of the BLR in Arp 102B we explore variations in the Hα\alpha and Hβ\beta line parameters during the monitored period. We fit the broad lines with three broad Gaussian functions finding the positions and intensities of the blue and red peaks in Hα\alpha and Hβ\beta. Additionally we fit averaged line profiles with the disc model. We find that the broad line profiles are double-peaked and have not been changed significantly in shapes, beside an additional small peak that, from time to time can be seen in the blue part of the Hα\alpha line. The positions of the blue and red peaks { have not changed significantly during the monitored period. The Hβ\beta line is broader than Hα\alpha line in the monitored period. The disc model is able to reproduce the Hβ\beta and Hα\alpha broad line profiles, however, observed variability in the line parameters are not in a good agreement with the emission disc hypothesis. It seems that the BLR of Arp 102B has a disc-like geometry, but the role of an outflow can also play an important role in observed variation of the broad line properties.Comment: 17 pages, Accepted for publication in A&
    corecore