3,805,289 research outputs found

    On the convergence of double integrals and a generalized version of Fubini's theorem on successive integration

    Full text link
    Let the function f: \bar{\R}^2_+ \to \C be such that f\in L^1_{\loc} (\bar{\R}^2_+). We investigate the convergence behavior of the double integral \int^A_0 \int^B_0 f(u,v) du dv \quad {\rm as} \quad A,B \to \infty,\leqno(*) where AA and BB tend to infinity independently of one another; while using two notions of convergence: that in Pringsheim's sense and that in the regular sense. Our main result is the following Theorem 3: If the double integral (*) converges in the regular sense, or briefly: converges regularly, then the finite limits limy0A(0yf(u,v)dv)du=:I1(A)\lim_{y\to \infty} \int^A_0 \Big(\int^y_0 f(u,v) dv\Big) du =: I_1 (A) and limx0B(0xf(u,v)du)dv=:I2(B)\lim_{x\to \infty} \int^B_0 \Big(\int^x_0 f(u,v) du) dv = : I_2 (B) exist uniformly in 0<A,B<0<A, B <\infty, respectively; and limAI1(A)=limBI2(B)=limA,B0A0Bf(u,v)dudv.\lim_{A\to \infty} I_1(A) = \lim_{B\to \infty} I_2 (B) = \lim_{A, B \to \infty} \int^A_0 \int^B_0 f(u,v) du dv. This can be considered as a generalized version of Fubini's theorem on successive integration when f\in L^1_{\loc} (\bar{\R}^2_+), but f∉L1(Rˉ+2)f\not\in L^1 (\bar{\R}^2_+)

    On the definition and the properties of the principal eigenvalue of some nonlocal operators

    Full text link
    In this article we study some spectral properties of the linear operator L_Ω+a\mathcal{L}\_{\Omega}+a defined on the space C(Ωˉ)C(\bar\Omega) by :L_Ω[φ]+aφ:=_ΩK(x,y)φ(y)dy+a(x)φ(x) \mathcal{L}\_{\Omega}[\varphi] +a\varphi:=\int\_{\Omega}K(x,y)\varphi(y)\,dy+a(x)\varphi(x) where ΩRN\Omega\subset \mathbb{R}^N is a domain, possibly unbounded, aa is a continuous bounded function and KK is a continuous, non negative kernel satisfying an integrability condition. We focus our analysis on the properties of the generalised principal eigenvalue λ_p(L_Ω+a)\lambda\_p(\mathcal{L}\_{\Omega}+a) defined by \lambda\_p(\mathcal{L}\_{\Omega}+a):= \sup\{\lambda \in \mathbb{R} \,|\, \exists \varphi \in C(\bar \Omega), \varphi\textgreater{}0, \textit{such that}\, \mathcal{L}\_{\Omega}[\varphi] +a\varphi +\lambda\varphi \le 0 \, \text{in}\;\Omega\}. We establish some new properties of this generalised principal eigenvalue λ_p\lambda\_p. Namely, we prove the equivalence of different definitions of the principal eigenvalue. We also study the behaviour of λ_p(L_Ω+a)\lambda\_p(\mathcal{L}\_{\Omega}+a) with respect to some scaling of KK. For kernels KK of the type, K(x,y)=J(xy)K(x,y)=J(x-y) with JJ a compactly supported probability density, we also establish some asymptotic properties of λ_p(L_σ,m,Ω1σm+a)\lambda\_{p} \left(\mathcal{L}\_{\sigma,m,\Omega} -\frac{1}{\sigma^m}+a\right) where L_σ,m,Ω\mathcal{L}\_{\sigma,m,\Omega} is defined by L_σ,m,Ω[φ]:=1σ2+N_ΩJ(xyσ)φ(y)dy\displaystyle{\mathcal{L}\_{\sigma,m,\Omega}[\varphi]:=\frac{1}{\sigma^{2+N}}\int\_{\Omega}J\left(\frac{x-y}{\sigma}\right)\varphi(y)\, dy}. In particular, we prove that lim_σ0λ_p(L_σ,2,Ω1σ2+a)=λ_1(D_2(J)2NΔ+a),\lim\_{\sigma\to 0}\lambda\_p\left(\mathcal{L}\_{\sigma,2,\Omega}-\frac{1}{\sigma^{2}}+a\right)=\lambda\_1\left(\frac{D\_2(J)}{2N}\Delta +a\right),where D_2(J):=_RNJ(z)z2dzD\_2(J):=\int\_{\mathbb{R}^N}J(z)|z|^2\,dz and λ_1\lambda\_1 denotes the Dirichlet principal eigenvalue of the elliptic operator. In addition, we obtain some convergence results for the corresponding eigenfunction φ_p,σ\varphi\_{p,\sigma}

    Building blocks of amplified endomorphisms of normal projective varieties

    Get PDF
    Let XX be a normal projective variety. A surjective endomorphism f:XXf:X\to X is int-amplified if fLL=Hf^\ast L - L =H for some ample Cartier divisors LL and HH. This is a generalization of the so-called polarized endomorphism which requires that fHqHf^*H\sim qH for some ample Cartier divisor HH and q>1q>1. We show that this generalization keeps all nice properties of the polarized case in terms of the singularity, canonical divisor, and equivariant minimal model program
    corecore