6,494 research outputs found
How We Do It in Massachusetts: An Overview of How the Massachusetts Supreme Judicial Court Has Interpreted Its State Constitution to Address Contemporary Legal Issues
The 11 July 1988 Denver windshear encounters
On July 11, 1988, between 2207 and 2213 UTC (16:07 to 16:13 MDT), four successive United flights had inadvertent encounters with microburst windshear conditions while on final approach to Denver Stapleton Airport (DEN), each resulting in a missed approach, subsequent delay, and uneventful arrival. A fifth flight executed a missed approach without encountering the phenomena. There was no damage to aircraft and no passenger injuries were incurred. The term inadvertent is used within United Airlines' windshear training materials and the Federal Aviation Administration (FAA) Windshear Training Aid to connote an encounter with windshear after vigilance and cautionary practices fail to identify and afford complete avoidance of the hazardous area. No crew culpability is implied. A comprehensive investigation for scientific purposes in the study of windshear phenomenon is being conducted separately under the guidance of the FAA with involvement and cooperation from United, the National Transportation Safety Board (NTSB), National Center for Atmospheric Research (NCAR), Boeing, Douglas, NASA, and others
ORGANIC FOOD ADOPTION DECISIONS BY NEW MEXICO GROCERIES
Sales for organically grown foods, particularly organic fresh produce are increasing. This study focuses on the characteristics of grocery stores in New Mexico who sell or intend to sell organic foods. The results suggest most grocery stores do not carry organic foods because of the low availability and perceived consumer demand. However, stores that sell organic foods reported consumer demand prompted them to carry organic foods. The results can provide information for grocery stores to further understand problems and benefits associated with adopting organic foods.Agribusiness,
Implementation of turbulence models into simulators
Simulation of turbulence as it relates to the flight training environment is discussed in general terms. Simulators that put random white noise into the system and simulators that put random motion into the equations of motion are discussed, as are simulators that incorporate pitch and roll moments into vertical turbulence. Wind shear models and simplified models of microburst phenomena are covered
Mapping the Shores of the Brown Dwarf Desert. I. Upper Scorpius
We present the results of a survey for stellar and substellar companions to 82 young stars in the nearby OB association Upper Scorpius. This survey used nonredundant aperture mask interferometry to achieve typical contrast
limits of ΔK ~5-6 at the diffraction limit, revealing 12 new binary companions that lay below the detection limits
of traditional high-resolution imaging; we also summarize a complementary snapshot imaging survey that discovered
seven directly resolved companions. The overall frequency of binary companions (~35 +5 -4% at separations of
6-435 AU) appears to be equivalent to field stars of similar mass, but companions could be more common among
lower mass stars than for the field. The companion mass function has statistically significant differences compared to several suggested mass functions for the field, and we suggest an alternate lognormal parameterization of the mass function. Our survey limits encompass the entire brown dwarf mass range, but we only detected a single companion that might be a brown dwarf; this deficit resembles the so-called brown dwarf desert that has been observed by radial velocity planet searches. Finally, our survey’s deep detection limits extend into the top of the planetary mass function, reaching 8-12 MJup for half of our sample. We have not identified any planetary companions at high confidence (≳99.5%), but we have identified four candidate companions at lower confidence (≳97.5%) that merit additional follow-up to confirm or disprove their existence
The Role of Multiplicity in Disk Evolution and Planet Formation
The past decade has seen a revolution in our understanding of protoplanetary
disk evolution and planet formation in single star systems. However, the
majority of solar-type stars form in binary systems, so the impact of binary
companions on protoplanetary disks is an important element in our understanding
of planet formation. We have compiled a combined multiplicity/disk census of
Taurus-Auriga, plus a restricted sample of close binaries in other regions, in
order to explore the role of multiplicity in disk evolution. Our results imply
that the tidal influence of a close (<40 AU) binary companion significantly
hastens the process of protoplanetary disk dispersal, as ~2/3 of all close
binaries promptly disperse their disks within <1 Myr after formation. However,
prompt disk dispersal only occurs for a small fraction of wide binaries and
single stars, with ~80%-90% retaining their disks for at least ~2--3 Myr (but
rarely for more than ~5 Myr). Our new constraints on the disk clearing
timescale have significant implications for giant planet formation; most single
stars have 3--5 Myr within which to form giant planets, whereas most close
binary systems would have to form giant planets within <1 Myr. If core
accretion is the primary mode for giant planet formation, then gas giants in
close binaries should be rare. Conversely, since almost all single stars have a
similar period of time within which to form gas giants, their relative rarity
in RV surveys indicates either that the giant planet formation timescale is
very well-matched to the disk dispersal timescale or that features beyond the
disk lifetime set the likelihood of giant planet formation.Comment: Accepted to ApJ; 15 pages, 3 figures, 3 tables in emulateapj forma
Two Wide Planetary-mass Companions to Solar-type Stars in Upper Scorpius
At wide separations, planetary-mass and brown dwarf companions to solar-type stars occupy a curious region of
parameter space not obviously linked to binary star formation or solar system scale planet formation. These
companions provide insight into the extreme case of companion formation (either binary or planetary), and
due to their relative ease of observation when compared to close companions, they offer a useful template
for our expectations of more typical planets. We present the results from an adaptive optics imaging survey
for wide (~50–500 AU) companions to solar-type stars in Upper Scorpius. We report one new discovery of a
~14 M_J companion around GSC 06214−00210and confirm that the candidate planetary-mass companion 1RXS
J160929.1−210524 detected by Lafrenière et al. is in fact comoving with its primary star. In our survey, these
two detections correspond to ~4% of solar-type stars having companions in the 6–20 M_J mass and ~200–500 AU
separation range. This figure is higher than would be expected if brown dwarfs and planetary-mass companions
were drawn from an extrapolation of the binary mass function. Finally, we discuss implications for the formation
of these objects
On Tractable Exponential Sums
We consider the problem of evaluating certain exponential sums. These sums
take the form ,
where each x_i is summed over a ring Z_N, and f(x_1,...,x_n) is a multivariate
polynomial with integer coefficients. We show that the sum can be evaluated in
polynomial time in n and log N when f is a quadratic polynomial. This is true
even when the factorization of N is unknown. Previously, this was known for a
prime modulus N. On the other hand, for very specific families of polynomials
of degree \ge 3, we show the problem is #P-hard, even for any fixed prime or
prime power modulus. This leads to a complexity dichotomy theorem - a complete
classification of each problem to be either computable in polynomial time or
#P-hard - for a class of exponential sums. These sums arise in the
classifications of graph homomorphisms and some other counting CSP type
problems, and these results lead to complexity dichotomy theorems. For the
polynomial-time algorithm, Gauss sums form the basic building blocks. For the
hardness results, we prove group-theoretic necessary conditions for
tractability. These tests imply that the problem is #P-hard for even very
restricted families of simple cubic polynomials over fixed modulus N
- …
