6,673 research outputs found
Formation of Atomic Carbon Chains from Graphene Nanoribbons
The formation of one-dimensional carbon chains from graphene nanoribbons is
investigated using it ab initio molecular dynamics. We show under what
conditions it is possible to obtain a linear atomic chain via pulling of the
graphene nanoribbons. The presence of dimers composed of two-coordinated carbon
atoms at the edge of the ribbons is necessary for the formation of the linear
chains, otherwise there is simply the full rupture of the structure. The
presence of Stone-Wales defects close to these dimers may lead to the formation
of longer chains. The local atomic configuration of the suspended atoms
indicates the formation of single and triple bonds, which is a characteristic
of polyynes.Comment: 4 pages, 5 figure
Electron-beam-induced shift in the apparent position of a pinned vortex in a thin superconducting film
When an electron beam strikes a superconducting thin film near a pinned
vortex, it locally increases the temperature-dependent London penetration depth
and perturbs the circulating supercurrent, thereby distorting the vortex's
magnetic field toward the heated spot. This phenomenon has been used to
visualize vortices pinned in SQUIDs using low-temperature scanning electron
microscopy. In this paper I develop a quantitative theory to calculate the
displacement of the vortex-generated magnetic-flux distribution as a function
of the distance of the beam spot from the vortex core. The results are
calculated using four different models for the spatial distribution of the
thermal power deposited by the electron beam.Comment: 9 pages, 6 figures, resubmitted to PRB with referee-suggested
revisions, includes new paragraph on numerical evaluatio
Chasing the second gamma-ray bright isolated neutron star: 3EG J1835+5918/RX J1836.2+5925
The EGRET telescope aboard NASAs Compton GRO has repeatedly detected 3EG
J1835+5918, a bright and steady source of high-energy gamma-ray emission with
no identification suggested until recently. The long absence of any likely
counterpart for a bright gamma-ray source located 25 degrees off the Galactic
plane initiated several attempts of deep observations at other wavelengths. We
report on counterparts in X-rays on a basis of a 60 ksec ROSAT HRI image. In
order to conclude on the plausibility of the X-ray counterparts, we reanalyzed
data from EGRET at energies above 100 MeV and above 1 GeV, including data up to
CGRO observation cycle 7. The gamma-ray source location represents the latest
and probably the final positional assessment based on EGRET data. The X-ray
counterparts were studied during follow-up optical identification campaigns,
leaving only one object to be likely associated with the gamma-ray source 3EG
J1835+5918. This object, RX J1836.2+5925, has the characteristics of an
isolated neutron star and possibly of a radio-quiet pulsar.Comment: 5 pages, 3 figures. To appear in the Proceedings of the 270.
WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan.
21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J. Truemper.
Proceedings are available as MPE-Report 27
Equidistribution of the Fekete points on the sphere
The Fekete points are the points that maximize a Vandermonde-type determinant
that appears in the polynomial Lagrange interpolation formula. They are well
suited points for interpolation formulas and numerical integration. We prove
the asymptotic equidistribution of the Fekete points in the sphere. The way we
proceed is by showing their connection with other array of points, the
Marcinkiewicz-Zygmund arrays and the interpolating arrays, that have been
studied recently
Preliminary results of fast neutron treatments in carcinoma of the pancreas
A group of 30 patients with adenocarcinoma of the pancreas including some patients with very advanced disease, were treated with the so-called mixed beam modality employing photon treatments three times per week and neutron treatments twice a week. Two hundred Rads or equivalent Rads (RBE 3.3) were given in daily fractions aiming at a total dose of 6000 Rads in 6 to 8 weeks. The treatments were well tolerated and significant palliation was achieved in 26 to 30 cases. Twelve months survival was 33 percent with a median survival of 7 months or 210 days. Treatment techniques and localization procedures are discussed
Equidistribution of the Fekete points on the sphere
The Fekete points are the points that maximize a Vandermonde-type determinant
that appears in the polynomial Lagrange interpolation formula. They are well
suited points for interpolation formulas and numerical integration. We prove
the asymptotic equidistribution of the Fekete points in the sphere. The way we
proceed is by showing their connection with other array of points, the
Marcinkiewicz-Zygmund arrays and the interpolating arrays, that have been
studied recently
A two step algorithm for learning from unspecific reinforcement
We study a simple learning model based on the Hebb rule to cope with
"delayed", unspecific reinforcement. In spite of the unspecific nature of the
information-feedback, convergence to asymptotically perfect generalization is
observed, with a rate depending, however, in a non- universal way on learning
parameters. Asymptotic convergence can be as fast as that of Hebbian learning,
but may be slower. Moreover, for a certain range of parameter settings, it
depends on initial conditions whether the system can reach the regime of
asymptotically perfect generalization, or rather approaches a stationary state
of poor generalization.Comment: 13 pages LaTeX, 4 figures, note on biologically motivated stochastic
variant of the algorithm adde
Tuning the exciton g-factor in single InAs/InP quantum dots
Photoluminescence data from single, self-assembled InAs/InP quantum dots in
magnetic fields up to 7 T are presented. Exciton g-factors are obtained for
dots of varying height, corresponding to ground state emission energies ranging
from 780 meV to 1100 meV. A monotonic increase of the g-factor from -2 to +1.2
is observed as the dot height decreases. The trend is well reproduced by sp3
tight binding calculations, which show that the hole g-factor is sensitive to
confinement effects through orbital angular momentum mixing between the
light-hole and heavy-hole valence bands. We demonstrate tunability of the
exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP
nanotemplates
Fermi-LAT Observations of High- and Intermediate-Velocity Clouds: Tracing Cosmic Rays in the Halo of the Milky Way
It is widely accepted that cosmic rays (CRs) up to at least PeV energies are
Galactic in origin. Accelerated particles are injected into the interstellar
medium where they propagate to the farthest reaches of the Milky Way, including
a surrounding halo. The composition of CRs coming to the solar system can be
measured directly and has been used to infer the details of CR propagation that
are extrapolated to the whole Galaxy. In contrast, indirect methods, such as
observations of gamma-ray emission from CR interactions with interstellar gas,
have been employed to directly probe the CR densities in distant locations
throughout the Galactic plane. In this article we use 73 months of data from
the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV
to search for gamma-ray emission produced by CR interactions in several high-
and intermediate-velocity clouds located at up to ~ 7 kpc above the Galactic
plane. We achieve the first detection of intermediate-velocity clouds in gamma
rays and set upper limits on the emission from the remaining targets, thereby
tracing the distribution of CR nuclei in the halo for the first time. We find
that the gamma-ray emissivity per H atom decreases with increasing distance
from the plane at 97.5% confidence level. This corroborates the notion that CRs
at the relevant energies originate in the Galactic disk. The emissivity of the
upper intermediate-velocity Arch hints at a 50% decline of CR densities within
2 kpc from the plane. We compare our results to predictions of CR propagation
models.Comment: Accepted for publication in the Astrophysical Journa
- …
