12 research outputs found
Synthesis of carboxyimidamide-substituted benzo[c][1,2,5]oxadiazoles and their analogs, and evaluation of biological activity against Leishmania donovani
A facile synthesis route to carboxyimidamide-substituted benzoxadiazoles and related derivatives was developed. A total of 25 derivatives were synthesized. They were evaluated for antileishmanial activity by inhibition of Leishmania donovani axenic amastigote growth using a fluorescent viability microplate assay. The most promising derivative (14) demonstrated an antileishmanial EC50 of 4.0 mu M, and it also showed activity in infected macrophages (EC50 5.92 mu M) without signs of cytotoxicity.Peer reviewe
Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents
Barbituric and thiobarbituric acid derivatives have become progressively attractive to medicinal chemists due to their wide range of biological activities. Herein, different series of 1,3,5-trisubstituted barbiturates and thiobarbiturates were prepared in moderate to excellent yields and their activity as xanthine oxidase inhibitors, antioxidants, antibacterial agents and as anti-proliferative compounds was evaluated in vitro. Interesting bioactive barbiturates were found namely, 1,3-dimethyl-5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6c) and 1,3-dimethyl-5-[1-[2-(4-nitrophenyl)hydrazinyl]ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6e), which showed concomitant xanthine oxidase inhibitory effect (IC50 values of 24.3 and 27.9 mu M, respectively), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (IC50 values of 18.8 and 23.8 mu M, respectively). In addition, 5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6d) also revealed DPPH radical scavenger effect, with an IC50 value of 20.4 mu M. Moreover, relevant cytotoxicity against MCF-7 cells (IC50 = 13.3 mu M) was observed with 5-[[(2-chloro-4-nitrophenyl)amino]methylene]-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (7d). Finally, different 5-hydrazinylethylidenepyrimidines revealed antibacterial activity against Acinetobacter baumannii (MIC values between 12.5 and 25.0 mu M) which paves the way for developing new treatments for infections caused by this Gram-negative coccobacillus bacterium, known to be an opportunistic pathogen in humans with high relevance in multidrug-resistant nosocomial infections. The most promising bioactive barbiturates were studied in silico with emphasis on compliance with the Lipinski's rule of five as well as several pharmacokinetics and toxicity parameters. (C) 2017 Elsevier Masson SAS. All rights reserved.Peer reviewe
Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis
Cutaneous leishmaniasis (CL) is an infectious, parasitic disease caused by the protozoan Leishmania. Amphotericin B (AMB) is
a macrolide polyene antibiotic presenting potent antifungal and antileishmanial activity, but due to poor water solubility at
physiological pH, side effects, and toxicity, its therapeutic efficiency is limited. In the present study, poly(lactic-co-glycolic acid)
(PLGA) nanoparticles (NPs) loaded with AMB were generated to reduce drug toxicity and facilitate localized delivery over a
prolonged time. AMB NPs were characterized for particle size, zeta potential, polydispersity index, and degree of aggregation.
In vitro assessments demonstrated its sustained activity against Leishmania major promastigotes and parasite-infected macrophages.
A single intralesional administration to infected BALB/c mice revealed that AMB NPs were more effective than AMB
deoxycholate in terms of reducing lesion area. Taken together, these findings suggest thatAMB NPs improve AMB delivery and
can be used for local treatment of CL.This research was funded by the GIP program of the
Deutsche Forschungsgemeinschaft (DFG) German Research Foundation.
EZ wish to acknowledge the financial support of the RBNI-The Russell
Berrie Nanotechnology Institute at the Technion. CLJ holds the Michael
and Penny Feiwel Chair of Dermatology
Synthesis and biological evaluation of 2-arylbenzimidazoles targeting Leishmania donovani
Synthesis, Characterization, Crystal Structure, and Hirshfeld Surface Analysis of Ethyl 2-(4-bromophenyl)-1-cyclohexyl-1H-benzo[d]imidazole-5-carboxylate
A benzimidazole derivative exhibiting antitumor activity blocks EGFR and HER2 activity and upregulates DR5 in breast cancer cells
Aberrant expression or function of epidermal growth factor receptor (EGFR) or the closely related human epidermal growth factor receptor 2 (HER2) can promote cell proliferation and survival, thereby contributing to tumorigenesis. Specific antibodies and low-molecular-weight tyrosine kinase inhibitors of both proteins are currently in clinical trials for cancer treatment. Benzimidazole derivatives possess diverse biological activities, including antitumor activity. However, the anticancer mechanism of 5a (a 2-aryl benzimidazole compound; 2-chloro-N-(2-p-tolyl-1H-benzo[d]imidazol-5-yl)acetamide, C(16)H(14)ClN(3)O, MW299), a novel 2-aryl benzimidazole derivative, toward breast cancer is largely unknown. Here, we demonstrate that 5a potently inhibited both EGFR and HER2 activity by reducing EGFR and HER2 tyrosine phosphorylation and preventing downstream activation of PI3K/Akt and MEK/Erk pathways in vitro and in vivo. We also show that 5a inhibited the phosphorylation of FOXO and promoted FOXO translocation from the cytoplasm into the nucleus, resulting in the G1-phase cell cycle arrest and apoptosis. Moreover, 5a potently induced apoptosis via the c-Jun N-terminal kinase (JNK)-mediated death receptor 5 upregulation in breast cancer cells. The antitumor activity of 5a was consistent with additional results demonstrating that 5a significantly reduced tumor volume in nude mice in vivo. Analysis of the primary breast cancer cell lines with HER2 overexpression further confirmed that 5a significantly inhibited Akt Ser473 and Bad Ser136 phosphorylation and reduced cyclin D3 expression. On the basis of our findings, further development of this 2-aryl benzimidazole derivative, a new class of multitarget anticancer agents, is warranted and represents a novel strategy for improving breast cancer treatment
