39,348 research outputs found
Stress concentration around a small circular hole in the HiMAT composite plate
Anisotropic plate theory is used to calculate the anisotropic stress concentration factors for a composite plate (AS/3501-5 graphite/epoxy composite, single ply or laminated) containing a circular hole. This composite material is used on the highly maneuverable aircraft technology (HiMAT) vehicle. It is found that the anisotropic stress concentration factor could be greater or less than 3 (the stress concentration factor for isotropic materials), and that the locations of the maximum tangential stress points could shift with the change of fiber orientation with respect to the loading axis. The effect of hole size on the stress concentration factor is examined using the Point Stress Criterion and the Averaged Stress Criterion. The predicted stress concentration factors based on the two theories compared fairly well with the measured values for the hole size 0.3175 cm (1/8 in). It is also found that through the lamination process, the stress concentration factor could be reduced drastically, indicating an improvement in structural performance
Accuracies of southwell and force/stiffness methods in the prediction of buckling strength of hypersonic aircraft wing tubular panels
Accuracies of the Southwell method and the force/stiffness (F/S) method are examined when the methods were used in the prediction of buckling loads of hypersonic aircraft wing tubular panels, based on nondestructive buckling test data. Various factors affecting the accuracies of the two methods were discussed. Effects of load cutoff point in the nondestructive buckling tests on the accuracies of the two methods were discussed in great detail. For the tubular panels under pure compression, the F/S method was found to give more accurate buckling load predictions than the Southwell method, which excessively overpredicts the buckling load. It was found that the Southwell method required a higher load cutoff point, as compared with the F/S method. In using the F/S method for predicting the buckling load of tubular panels under pure compression, the load cutoff point of approximately 50 percent of the critical load could give reasonably accurate predictions
Application of Finite Elastic Theory to the Deformation of Rubbery Materials
The purpose of this discussion, then, is to show how the nature of
the strain energy function can be deduced from experiments on rubbery materials
Superplastically formed diffusion bonded metallic structure
A metallic sandwich structure particularly suited for use in aerospace industries comprising a base plate, a cover plate, and an orthogonally corrugated core is described. A pair of core plates formed of a superplastic alloy are interposed between the base plate and the cover plate and bonded. Each of the core plates is characterized by a plurality of protrusions comprising square-based, truncated pyramids uniformly aligned along orthogonally related axes perpendicularly bisecting the legs of the bases of the pyramids and alternately inverted along orthogonally related planes diagonally bisecting the pyramids, whereby an orthogonally corrugated core is provided
Thermal stress analysis of space shuttle orbiter subjected to reentry aerodynamic heating
A structural performance and resizing (SPAR) finite-element computer program and NASA structural analysis (NASTRAN) finite-element computer programs were used in the thermal stress analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. A SPAR structural model was set up for the entire left wing of the orbiter, and NASTRAN structural models were set up for: (1) a wing segment located at midspan of the orbiter left wing, and (2) a fuselage segment located at midfuselage. The thermal stress distributions in the orbiter structure were obtained and the critical high thermal stress regions were identified. It was found that the thermal stresses induced in the orbiter structure during reentry were relatively low. The thermal stress predictions from the whole wing model were considered to be more accurate than those from the wing segment model because the former accounts for temperature and stress effects throughout the entire wing
Finite disturbance effect on the stability of a laminar incompressible wake behind a flat plate
An integral method is used to investigate the interaction between a two-dimensional, single frequency finite amplitude disturbance in a laminar, incompressible wake behind a flat plate at zero incidence. The mean flow is assumed to be a non-parallel flow characterized by a few shape parameters. Distribution of the fluctuation across the wake is obtained as functions of those mean flow parameters by solving the inviscid Rayleigh equation using the local mean flow. The variations of the fluctuation amplitude and of the shape parameters for the mean flow are then obtained by solving a set of ordinary differential equations derived from the momentum and energy integral equations. The interaction between the mean flow and the fluctuation through Reynolds stresses plays an important role in the present formulation, and the theoretical results show good agreement with the measurements of Sato & Kuriki (1961)
Prediction of service life of aircraft structural components using the half-cycle method
The service life of aircraft structural components undergoing random stress cycling was analyzed by the application of fracture mechanics. The initial crack sizes at the critical stress points for the fatigue-crack growth analysis were established through proof load tests. The fatigue-crack growth rates for random stress cycles were calculated using the half-cycle method. A new equation was developed for calculating the number of remaining flights for the structural components. The number of remaining flights predicted by the new equation is much lower than that predicted by the conventional equation
Reentry heat transfer analysis of the space shuttle orbiter
A structural performance and resizing finite element thermal analysis computer program was used in the reentry heat transfer analysis of the space shuttle. Two typical wing cross sections and a midfuselage cross section were selected for the analysis. The surface heat inputs to the thermal models were obtained from aerodynamic heating analyses, which assumed a purely turbulent boundary layer, a purely laminar boundary layer, separated flow, and transition from laminar to turbulent flow. The effect of internal radiation was found to be quite significant. With the effect of the internal radiation considered, the wing lower skin temperature became about 39 C (70 F) lower. The results were compared with fight data for space transportation system, trajectory 1. The calculated and measured temperatures compared well for the wing if laminar flow was assumed for the lower surface and bay one upper surface and if separated flow was assumed for the upper surfaces of bays other than bay one. For the fuselage, good agreement between the calculated and measured data was obtained if laminar flow was assumed for the bottom surface. The structural temperatures were found to reach their peak values shortly before touchdown. In addition, the finite element solutions were compared with those obtained from the conventional finite difference solutions
Intrabody Gene Therapy Ameliorates Motor, Cognitive, and Neuropathological Symptoms in Multiple Mouse Models of Huntington's Disease
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease resulting from the expansion of a glutamine repeat in the huntingtin (Htt) protein. Current therapies are directed at managing symptoms such as chorea and psychiatric disturbances. In an effort to develop a therapy directed at disease prevention we investigated the utility of highly specific, anti-Htt intracellular antibodies (intrabodies). We previously showed that V_(L)12.3, an intrabody recognizing the N terminus of Htt, and Happ1, an intrabody recognizing the proline-rich domain of Htt, both reduce mHtt-induced toxicity and aggregation in cell culture and brain slice models of HD. Due to the different mechanisms of action of these two intrabodies, we then tested both in the brains of five mouse models of HD using a chimeric adeno-associated virus 2/1 (AAV2/1) vector with a modified CMV enhancer/chicken β-actin promoter. V_(L)12.3 treatment, while beneficial in a lentiviral model of HD, has no effect on the YAC128 HD model and actually increases severity of phenotype and mortality in the R6/2 HD model. In contrast, Happ1 treatment confers significant beneficial effects in a variety of assays of motor and cognitive deficits. Happ1 also strongly ameliorates the neuropathology found in the lentiviral, R6/2, N171-82Q, YAC128, and BACHD models of HD. Moreover, Happ1 significantly prolongs the life span of N171-82Q mice. These results indicate that increasing the turnover of mHtt using AAV-Happ1 gene therapy represents a highly specific and effective treatment in diverse mouse models of HD
Combined compressive and shear buckling analysis of hypersonic aircraft structural sandwich panels
The combined-load (compression and shear) buckling equations were established for orthotropic sandwich panels by using the Rayleigh-Ritz method to minimize the panel total potential energy. The resulting combined-load buckling equations were used to generate buckling interaction curves for super-plastically-formed/diffusion-bonded titanium truss-core sandwich panels and titanium honeycomb-core sandwich panels having the same specific weight. The relative combined-load buckling strengths of these two types of sandwich panels are compared with consideration of their sandwich orientations. For square and nearly square panels of both types, the combined load always induces symmetric buckling. As the panel aspect ratios increase, antisymmetric buckling will show up when the loading is shear-dominated combined loading. The square panel (either type) has the highest combined buckling strength, but the combined load buckling strength drops sharply as the panel aspect ratio increases. For square panels, the truss-core sandwich panel has higher compression-dominated combined load buckling strength. However, for shear dominated loading, the square honeycomb-core sandwich panel has higher shear-dominated combined load buckling strength
- …
