40 research outputs found
An engineered antibody binds a distinct epitope and is a potent inhibitor of murine and human VISTA
AbstractV-domain immunoglobulin (Ig) suppressor of T cell activation (VISTA) is an immune checkpoint that maintains peripheral T cell quiescence and inhibits anti-tumor immune responses. VISTA functions by dampening the interaction between myeloid cells and T cells, orthogonal to PD-1 and other checkpoints of the tumor-T cell signaling axis. Here, we report the use of yeast surface display to engineer an anti-VISTA antibody that binds with high affinity to mouse, human, and cynomolgus monkey VISTA. Our anti-VISTA antibody (SG7) inhibits VISTA function and blocks purported interactions with both PSGL-1 and VSIG3 proteins. SG7 binds a unique epitope on the surface of VISTA, which partially overlaps with other clinically relevant antibodies. As a monotherapy, and to a greater extent as a combination with anti-PD1, SG7 slows tumor growth in multiple syngeneic mouse models. SG7 is a promising clinical candidate that can be tested in fully immunocompetent mouse models and its binding epitope can be used for future campaigns to develop species cross-reactive inhibitors of VISTA.</jats:p
PET Reporter Gene Imaging and Ganciclovir-Mediated Ablation of Chimeric Antigen Receptor T Cells in Solid Tumors
Abstract
Imaging strategies to monitor chimeric antigen receptor (CAR) T-cell biodistribution and proliferation harbor the potential to facilitate clinical translation for the treatment of both liquid and solid tumors. In addition, the potential adverse effects of CAR T cells highlight the need for mechanisms to modulate CAR T-cell activity. The herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene has previously been translated as a PET reporter gene for imaging of T-cell trafficking in patients with brain tumor. The HSV1-TK enzyme can act as a suicide gene of transduced cells through treatment with the prodrug ganciclovir. Here we report the molecular engineering, imaging, and ganciclovir-mediated destruction of B7H3 CAR T cells incorporating a mutated version of the HSV1-tk gene (sr39tk) with improved enzymatic activity for ganciclovir. The sr39tk gene did not affect B7H3 CAR T-cell functionality and in vitro and in vivo studies in osteosarcoma models showed no significant effect on B7H3 CAR T-cell antitumor activity. PET/CT imaging with 9-(4-[18F]-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]FHBG) of B7H3-sr39tk CAR T cells in an orthotopic model of osteosarcoma revealed tumor homing and systemic immune expansion. Bioluminescence and PET imaging of B7H3-sr39tk CAR T cells confirmed complete tumor ablation with intraperitoneal ganciclovir administration. This imaging and suicide ablation system can provide insight into CAR T-cell migration and proliferation during clinical trials while serving as a suicide switch to limit potential toxicities.
Significance:
This study showcases the only genetically engineered system capable of serving the dual role both as an effective PET imaging reporter and as a suicide switch for CAR T cells.
</jats:sec
Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M+ diffuse midline gliomas letter
Diffuse intrinsic pontine glioma (DIPG) and other diffuse midline gliomas (DMGs) with mutated histone H3 K27M (H3-K27M) 1-5 are aggressive and universally fatal pediatric brain cancers 6 . Chimeric antigen receptor (CAR)-expressing T cells have mediated impressive clinical activity in B cell malignancies 7-10, and recent results suggest benefit in central nervous system malignancies 11-13 . Here, we report that patient-derived H3-K27M-mutant glioma cell cultures exhibit uniform, high expression of the disialoganglioside GD2. Anti-GD2 CAR T cells incorporating a 4-1BBz costimulatory domain 14 demonstrated robust antigen-dependent cytokine generation and killing of DMG cells in vitro. In five independent patient-derived H3-K27M+ DMG orthotopic xenograft models, systemic administration of GD2-targeted CAR T cells cleared engrafted tumors except for a small number of residual GD2lo glioma cells. To date, GD2-targeted CAR T cells have been well tolerated in clinical trials 15-17 . Although GD2-targeted CAR T cell administration was tolerated in the majority of mice bearing orthotopic xenografts, peritumoral neuroinflammation during the acute phase of antitumor activity resulted in hydrocephalus that was lethal in a fraction of animals. Given the precarious neuroanatomical location of midline gliomas, careful monitoring and aggressive neurointensive care management will be required for human translation. With a cautious multidisciplinary clinical approach, GD2-targeted CAR T cell therapy for H3-K27M+ diffuse gliomas of pons, thalamus and spinal cord could prove transformative for these lethal childhood cancers
Low CD19 Antigen Density Diminishes Efficacy of CD19 CAR T Cells and Can be Overcome By Rational Redesign of CAR Signaling Domains
Abstract
Target antigen density has emerged as a major factor influencing the potency of CAR T cells. Our laboratory has demonstrated that the activity of numerous CARs is highly dependent on target antigen density (Walker et al., Mol Ther, 2017), and high complete response rates in a recent trial of CD22 CAR T cells for B-ALL were tempered by frequent relapses due to decreased CD22 antigen density on lymphoblasts (Fry et al., Nat Med, 2018). To assess if antigen density is also a determinant of CD19 CAR T cell therapeutic success, we analyzed CD19 antigen density from fifty pediatric B-ALL patients treated on a clinical trial of CD19-CD28ζ CAR T cells. We found that patients whose CD19 expression was below a threshold density (2000 molecules/lymphoblast) were significantly less likely to achieve a clinical response than those whose leukemia expressed higher levels of CD19.
In order to further understand this limitation and how it may be overcome, we developed a model of variable CD19 antigen density B-ALL. After establishing a CD19 knockout of the B-ALL cell line NALM6, we used a lentivirus to reintroduce CD19 and then FACS sorted and single cell cloned to achieve a library of NALM6 clones with varying CD19 surface densities. CD19-CD28ζ CAR T cell activity was highly dependent on CD19 antigen density. We observed decreases in cytotoxicity, proliferation, and cytokine production by CD19 CAR T cells when encountering CD19-low cells, with an approximate threshold of 2,000 molecules of CD19 per lymphoblast, below which, cytokine production in response to tumor cells was nearly ablated.
Given that a CD19-4-1BBζ CAR is FDA approved for children with B-ALL and adults with DLBCL, we wondered whether CARs incorporating this alternative costimulatory domain would have similar antigen density thresholds for activation. Surprisingly, CD19-4-1BBζ CAR T cells made even less cytokine, proliferated less, and had further diminished cytolytic capacity against CD19-low cells compared to CD19-CD28ζ CAR T cells. Analysis by western blot of protein lysates from CAR T cells stimulated with varying amounts of antigen demonstrated that CD19-CD28ζ CAR T cells had higher levels of downstream signals such as pERK than CD19-4-1BBζ CAR T cells at lower antigen densities. Accordingly, calcium flux after stimulation was also significantly higher in CD19-CD28ζ than CD19-4-1BBζ CAR T cells.
In a xenograft model of CD19-low B-ALL, CD19-4-1BBζ CAR T cells demonstrated no anti-tumor activity, while CD19-CD28ζ CAR T cells eradicated CD19-low leukemia cells. Therefore, the choice of costimulatory domain in CAR T cells plays a major role in modulating activity against low antigen density tumors. CD28 costimulation endows high reactivity towards low antigen density tumors. We confirmed the generalizability of this finding using Her2 CAR T cells; Her2-CD28ζ CAR T cells cleared tumors in an orthotopic xenograft model of Her2-low osteosarcoma, while Her2-4-1BBζ CAR T cells had no effect. This finding has implications for CAR design for lymphoma and solid tumors, where antigen expression is more heterogeneous than B-ALL.
To enhance the activity of CD19-4-1BBζ CAR T cells against CD19-low leukemia, we designed a CAR with two copies of intracellular zeta in the signaling domain (CD19-4-1BBζζ). T cells expressing this double-zeta CAR demonstrated enhanced cytotoxicity, proliferation, cytokine production, and pERK signaling in response to CD19-low cells compared to single-zeta CARs. Additionally, in a xenograft model, CD19-4-1BBζζ CAR T cells demonstrated enhanced activity against CD19-low leukemia compared to CD19-4-1BBζ CAR T cells, significantly extending survival. The addition of a third zeta domain (CD19-4-1BBζζζ) further enhanced the activity of CAR T cells. However, inclusion of multiple copies of the costimulatory domains did not improve function.
In conclusion, CD19 antigen density is an important determinant of CAR T cell function and therapeutic response. CD19-CD28ζ CARs are more efficient at targeting CD19-low tumor cells than CD19-4-1BBζ CARs. The addition of multiple zeta domains to the CAR enhances its ability to target low antigen density tumors. This serves as proof of concept that rational redesign of CAR signaling endodomains can result in enhanced function against low antigen density tumors, an important step for extending the reach of these powerful therapeutics and overcoming a significant mechanism of tumor escape.
Disclosures
Lee: Juno: Consultancy.
</jats:sec
Abstract 1362: Metabolic engineering of CAR-T cells overcomes suppressive adenosine signaling and enhances functionality
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy has resulted in remarkable clinical outcomes in the context of acute and chronic lymphoblastic leukemia, but remains unsuccessful in the treatment of solid tumors. One reason for this failure is thought to be T cell dysfunction or exhaustion promoted by suppressive soluble factors within the tumor microenvironment (TME). High extracellular levels of the immunosuppressive factor adenosine (Ado) are generated in the TME via breakdown of ATP by ecto-enzymes CD39 and CD73 expressed on tumor-infiltrating immune cells. Binding of extracellular Ado to its receptor A2a on T cells results in inhibition of proliferation and effector function. Interestingly, CD39 has recently been described as a surrogate marker of exhaustion on human CAR-T cells and non-engineered T cells. Therefore, we hypothesized that CD39 expression on exhausted CAR-T cells promotes dysfunction through generation of extracellular adenosine.
Using an in vitro model of T cell exhaustion, whereby human T cells express a CAR that tonically signals in an antigen-independent manner (HA CAR), we demonstrate that exhausted HA CAR T cells actively hydrolyze extracellular ATP via their elevated expression of CD39 and CD73. Moreover, exhausted CD39+ CAR T cells upregulate several genes associated with a Treg phenotype at the mRNA and protein levels, suggesting that this cell population might be suppressive. To assess whether CD39+/CD73+ CAR T cells exhibit suppressive functions, we co-cultured them with non-exhausted CD19-CAR T cells. Indeed, proliferation and secretion of IL-2 by CD19 CAR T cells were diminished when they were co-cultured with exhausted CD39+ CAR T cells, and that this suppression is dependent on the A2a receptor. Using this knowledge, we used gene-editing and overexpression approaches to engineer CAR-T cells with resistance to suppressive adenosine signaling. In contrast to genetic deletion of CD39 or CD73, which did not alleviate CAR T cell dysfunction, genetic deletion of adenosine receptor A2aR in exhausted CAR T cells resulted in phenotypic changes and a modest improvement in tumor-specific killing. Further, ectopic overexpression of adenosine deaminase (ADA) in CAR T cells led to decreased exhaustion marker expression and significantly enhanced effector function. These data indicate that ADA overexpression is an innovative approach to increase the functionality of CAR T cells through avoidance of suppressive adenosine signaling, and provides proof-of-concept that metabolic engineering of CAR-T cells can pave the way for responses in patients with solid tumors.
Citation Format: Dorota Klysz, Meena Malipatlolla, Katherine Freitas, Malek Bashti, Louai Labanieh, Peng Xu, Cecilia Ramello, Amaury Lerust, Hyatt Balke Want, Kaithlen Zen Pacheco, Evan W. Weber, Shabnum Patel, Steven Feldman, Elena Sotillo, Crystal L. Mackall. Metabolic engineering of CAR-T cells overcomes suppressive adenosine signaling and enhances functionality [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 1362.</jats:p
Coopting T cell proximal signaling molecules enables Boolean logic-gated CAR T cell control
Introductory paragraphWhile CAR T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumor toxicity has hampered their development for solid tumors because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean logic gating to CAR T cells to prevent on-target, off-tumor toxicity3–7; however, a truly safe and effective logic-gated CAR has remained elusive8. Here, we describe a novel approach to CAR engineering in which we replace traditional ITAM-containing CD3ζ domains with intracellular proximal T cell signaling molecules. We demonstrate that certain proximal signaling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumorsin vivowhile bypassing upstream signaling proteins such as CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for the propagation of T cell signaling. We leveraged the cooperative role of LAT and SLP-76 to engineerLogic-gatedIntracellularNetworK(LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and the prevention of on-target, off-tumor toxicity. LINK CAR will dramatically expand the number and types of molecules that can be targeted with CAR T cells, enabling the deployment of these powerful therapeutics for solid tumors and diverse diseases such as autoimmunity9and fibrosis10. In addition, this work demonstrates that the internal signaling machinery of cells can be repurposed into surface receptors, a finding that could have broad implications for new avenues of cellular engineering.</jats:p
Delivery of CAR-T Cells in a Transient Injectable Stimulatory Hydrogel Niche Improves Treatment of Solid Tumors
AbstractAdoptive cell therapy (ACT) has proven to be highly effective in treating blood cancers such as B cell malignancies, but traditional approaches to ACT are poorly effective in treating the multifarious solid tumors observed clinically. Locoregional cell delivery methods have shown promising results in treating solid tumors compared to standard intravenous delivery methods, but the approaches that have been described to date have several critical drawbacks ranging from complex manufacturing and poor modularity to challenging adminstration. In this work, we develop a simple-to-implement self-assembled and injectable hydrogel material for the controlled co-delivery of CAR-T cells and stimulatory cytokines that improves treatment of solid tumors. We evaluate a range of hydrogel formulations to optimize the creation of a transient inflammatory niche that affords sustained exposure of CAR-T cells and cytokines. This facile approach yields increased CAR-T cell expansion, induces a more tumor-reactive CAR-T phenotype, and improves efficacy in treating solid tumors in mice.</jats:p
