13,986 research outputs found
Conserving Approximations in Time-Dependent Density Functional Theory
In the present work we propose a theory for obtaining successively better
approximations to the linear response functions of time-dependent density or
current-density functional theory. The new technique is based on the
variational approach to many-body perturbation theory (MBPT) as developed
during the sixties and later expanded by us in the mid nineties. Due to this
feature the resulting response functions obey a large number of conservation
laws such as particle and momentum conservation and sum rules. The quality of
the obtained results is governed by the physical processes built in through
MBPT but also by the choice of variational expressions. We here present several
conserving response functions of different sophistication to be used in the
calculation of the optical response of solids and nano-scale systems.Comment: 11 pages, 4 figures, revised versio
A fast 2D image reconstruction algorithm from 1D data for the Gaia mission
A fast 2-dimensional image reconstruction method is presented, which takes as
input 1-dimensional data acquired from scans across a central source in
different orientations. The resultant reconstructed images do not show
artefacts due to non-uniform coverage in the orientations of the scans across
the central source, and are successful in avoiding a high background due to
contamination of the flux from the central source across the reconstructed
image. Due to the weighting scheme employed this method is also naturally
robust to hot pixels. This method was developed specifically with Gaia data in
mind, but should be useful in combining data with mismatched resolutions in
different directions.Comment: accepted (18 pages, 13 figures) will appear in Experimental Astronom
From Hipparcos to Gaia
The measurement of the positions, distances, motions and luminosities of
stars represents the foundations of modern astronomical knowledge. Launched at
the end of the eighties, the ESA Hipparcos satellite was the first space
mission dedicated to such measurements. Hipparcos improved position accuracies
by a factor of 100 compared to typical ground-based results and provided
astrometric and photometric multi-epoch observations of 118,000 stars over the
entire sky. The impact of Hipparcos on astrophysics has been extremely valuable
and diverse. Building on this important European success, the ESA Gaia
cornerstone mission promises an even more impressive advance. Compared to
Hipparcos, it will bring a gain of a factor 50 to 100 in position accuracy and
of a factor of 10,000 in star number, collecting photometric,
spectrophotometric and spectroscopic data for one billion celestial objects.
During its 5-year flight, Gaia will measure objects repeatedly, up to a few
hundred times, providing an unprecedented database to study the variability of
all types of celestial objects. Gaia will bring outstanding contributions,
directly or indirectly, to most fields of research in astrophysics, such as the
study of our Galaxy and of its stellar constituents, the search for planets
outside the solar system.Comment: 6 pages. New Horizons in Time Domain Astronomy Proceedings IAU
Symposium No. 285, 2012, E. Griffin, B. Hanisch & R. Seaman, ed
Wick Theorem for General Initial States
We present a compact and simplified proof of a generalized Wick theorem to
calculate the Green's function of bosonic and fermionic systems in an arbitrary
initial state. It is shown that the decomposition of the non-interacting
-particle Green's function is equivalent to solving a boundary problem for
the Martin-Schwinger hierarchy; for non-correlated initial states a one-line
proof of the standard Wick theorem is given. Our result leads to new
self-energy diagrams and an elegant relation with those of the imaginary-time
formalism is derived. The theorem is easy to use and can be combined with any
ground-state numerical technique to calculate time-dependent properties.Comment: 9 pages, 5 figure; extended version published in Phys. Rev.
Correlation effects in bistability at the nanoscale: steady state and beyond
The possibility of finding multistability in the density and current of an
interacting nanoscale junction coupled to semi-infinite leads is studied at
various levels of approximation. The system is driven out of equilibrium by an
external bias and the non-equilibrium properties are determined by real-time
propagation using both time-dependent density functional theory (TDDFT) and
many-body perturbation theory (MBPT). In TDDFT the exchange-correlation effects
are described within a recently proposed adiabatic local density approximation
(ALDA). In MBPT the electron-electron interaction is incorporated in a
many-body self-energy which is then approximated at the Hartree-Fock (HF),
second-Born (2B) and GW level. Assuming the existence of a steady-state and
solving directly the steady-state equations we find multiple solutions in the
HF approximation and within the ALDA. In these cases we investigate if and how
these solutions can be reached through time evolution and how to reversibly
switch between them. We further show that for the same cases the inclusion of
dynamical correlation effects suppresses bistability.Comment: 13 pages, 12 figure
Kadanoff-Baym approach to time-dependent quantum transport in AC and DC fields
We have developed a method based on the embedded Kadanoff-Baym equations to
study the time evolution of open and inhomogeneous systems. The equation of
motion for the Green's function on the Keldysh contour is solved using
different conserving many-body approximations for the self-energy. Our
formulation incorporates basic conservation laws, such as particle
conservation, and includes both initial correlations and initial embedding
effects, without restrictions on the time-dependence of the external driving
field. We present results for the time-dependent density, current and dipole
moment for a correlated tight binding chain connected to one-dimensional
non-interacting leads exposed to DC and AC biases of various forms. We find
that the self-consistent 2B and GW approximations are in extremely good
agreement with each other at all times, for the long-range interactions that we
consider. In the DC case we show that the oscillations in the transients can be
understood from interchain and lead-chain transitions in the system and find
that the dominant frequency corresponds to the HOMO-LUMO transition of the
central wire. For AC biases with odd inversion symmetry odd harmonics to high
harmonic order in the driving frequency are observed in the dipole moment,
whereas for asymmetric applied bias also even harmonics have considerable
intensity. In both cases we find that the HOMO-LUMO transition strongly mixes
with the harmonics leading to harmonic peaks with enhanced intensity at the
HOMO-LUMO transition energy.Comment: 16 pages, 9 figures. Submitted at "Progress in Nonequilibrium Green's
Functions IV" conferenc
On the Executability of Interactive Computation
The model of interactive Turing machines (ITMs) has been proposed to
characterise which stream translations are interactively computable; the model
of reactive Turing machines (RTMs) has been proposed to characterise which
behaviours are reactively executable. In this article we provide a comparison
of the two models. We show, on the one hand, that the behaviour exhibited by
ITMs is reactively executable, and, on the other hand, that the stream
translations naturally associated with RTMs are interactively computable. We
conclude from these results that the theory of reactive executability subsumes
the theory of interactive computability. Inspired by the existing model of ITMs
with advice, which provides a model of evolving computation, we also consider
RTMs with advice and we establish that a facility of advice considerably
upgrades the behavioural expressiveness of RTMs: every countable transition
system can be simulated by some RTM with advice up to a fine notion of
behavioural equivalence.Comment: 15 pages, 0 figure
Numerical simulations on the motion of atoms travelling through a standing-wave light field
The motion of metastable helium atoms travelling through a standing light
wave is investigated with a semi-classical numerical model. The results of a
calculation including the velocity dependence of the dipole force are compared
with those of the commonly used approach, which assumes a conservative dipole
force. The comparison is made for two atom guiding regimes that can be used for
the production of nanostructure arrays; a low power regime, where the atoms are
focused in a standing wave by the dipole force, and a higher power regime, in
which the atoms channel along the potential minima of the light field. In the
low power regime the differences between the two models are negligible and both
models show that, for lithography purposes, pattern widths of 150 nm can be
achieved. In the high power channelling regime the conservative force model,
predicting 100 nm features, is shown to break down. The model that incorporates
velocity dependence, resulting in a structure size of 40 nm, remains valid, as
demonstrated by a comparison with quantum Monte-Carlo wavefunction
calculations.Comment: 9 pages, 4 figure
Many-body Green's function theory for electron-phonon interactions: the Kadanoff-Baym approach to spectral properties of the Holstein dimer
We present a Kadanoff-Baym formalism to study time-dependent phenomena for
systems of interacting electrons and phonons in the framework of many-body
perturbation theory. The formalism takes correctly into account effects of the
initial preparation of an equilibrium state, and allows for an explicit
time-dependence of both the electronic and phononic degrees of freedom. The
method is applied to investigate the charge neutral and non-neutral excitation
spectra of a homogeneous, two-site, two-electron Holstein model. This is an
extension of a previous study of the ground state properties in the Hartree
(H), partially self-consistent Born (Gd) and fully self-consistent Born (GD)
approximations published in Ref. [arXiv:1403.2968]. We show that choosing a
homogeneous ground state solution leads to unstable dynamics for a sufficiently
strong interaction, and that allowing a symmetry-broken state prevents this.
The instability is caused by the bifurcation of the ground state and understood
physically to be connected with the bipolaronic crossover of the exact system.
This mean-field instability persists in the partially self-consistent Born
approximation but is not found for the fully self-consistent Born
approximation. By understanding the stability properties, we are able to study
the linear response regime by calculating the density-density response function
by time-propagation. This functions amounts to a solution of the Bethe-Salpeter
equation with a sophisticated kernel. The results indicate that none of the
approximations is able to describe the response function during or beyond the
bipolaronic crossover for the parameters investigated. Overall, we provide an
extensive discussion on when the approximations are valid, and how they fail to
describe the studied exact properties of the chosen model system.Comment: 12 figure
- …
