676 research outputs found
A low‐noise high‐speed diode laser current controller
We describe a new diode laser current controller which features low current noise, excellent dc stability, and the capacity for high‐speed modulation. While it is simple and inexpensive to construct, the controller compares favorably with the best presently available commercial diode laser current controllers
The making of eusociality: insights from two bumblebee genomes.
The genomes of two bumblebee species characterized by a lower level of sociality than ants and honeybees provide new insights into the origin and evolution of insect societies
Stability of Magneto-optical Traps with Large Field Gradients: Limits on the Tight Confinement of Single Atoms
We report measurements of the stability of magneto-optical traps (MOTs) for neutral atoms in the limit of tight confinement of a single atom. For quadrupole magnetic field gradients at the trap center greater than ∼1 kG/cm, we find that stochastic diffusion of atoms out of the trapping volume becomes the dominant particle loss mechanism, ultimately limiting the MOT size to greater than ∼5 μm. We measured and modeled the diffusive loss rate as a function of laser power, detuning, and field gradient for trapped cesium atoms. In addition, for as few as two atoms, the collisional loss rates become very high for tightly confined traps, allowing the direct observation of isolated two-body atomic collisions in a MOT
Generation of an intense cold-atom beam from a pyramidal magneto-optical trap: experiment and simulation
An intense cold-atom beam source based on a modified pyramidal magneto-optical trap has been developed and characterized. We have produced a slow beam of cold cesium atoms with a continuous flux of 2.2× 10^9 atoms/s at a mean velocity of 15 m/s and with a divergence of 15 mrad. The corresponding radiant intensity is 1.2×10^13 atom s^−1 sr^−1. We have characterized the performance of our beam source over a range of operating conditions, and the measured values for atom flux, mean velocity, and divergence are in good agreement with results from detailed Monte Carlo numerical simulations
Genetic components to caste allocation in a multiple-queen ant species.
Reproductive division of labor and the coexistence of distinct castes are hallmarks of insect societies. In social insect species with multiple queens per colony, the fitness of nestmate queens directly depends on the process of caste allocation (i.e., the relative investment in queen, sterile worker and male production). The aim of this study is to investigate the genetic components to the process of caste allocation in a multiple-queen ant species. We conducted controlled crosses in the Argentine ant Linepithema humile and established single-queen colonies to identify maternal and paternal family effects on the relative production of new queens, workers, and males. There were significant effects of parental genetic backgrounds on various aspects of caste allocation: the paternal lineage affected the proportion of queens and workers produced whereas the proportions of queens and males, and females and males were influenced by the interaction between parental lineages. In addition to revealing nonadditive genetic effects on female caste determination in a multiple-queen ant species, this study reveals strong genetic compatibility effects between parental genomes on caste allocation components
Robust DNA Methylation in the Clonal Raider Ant Brain.
Social insects are promising model systems for epigenetics due to their immense morphological and behavioral plasticity. Reports that DNA methylation differs between the queen and worker castes in social insects [1-4] have implied a role for DNA methylation in regulating division of labor. To better understand the function of DNA methylation in social insects, we performed whole-genome bisulfite sequencing on brains of the clonal raider ant Cerapachys biroi, whose colonies alternate between reproductive (queen-like) and brood care (worker-like) phases [5]. Many cytosines were methylated in all replicates (on average 29.5% of the methylated cytosines in a given replicate), indicating that a large proportion of the C. biroi brain methylome is robust. Robust DNA methylation occurred preferentially in exonic CpGs of highly and stably expressed genes involved in core functions. Our analyses did not detect any differences in DNA methylation between the queen-like and worker-like phases, suggesting that DNA methylation is not associated with changes in reproduction and behavior in C. biroi. Finally, many cytosines were methylated in one sample only, due to either biological or experimental variation. By applying the statistical methods used in previous studies [1-4, 6] to our data, we show that such sample-specific DNA methylation may underlie the previous findings of queen- and worker-specific methylation. We argue that there is currently no evidence that genome-wide variation in DNA methylation is associated with the queen and worker castes in social insects, and we call for a more careful interpretation of the available data
Gravitational Helioseismology?
The magnitudes of the external gravitational perturbations associated with
the normal modes of the Sun are evaluated to determine whether these solar
oscillations could be observed with the proposed Laser Interferometer Space
Antenna (LISA), a network of satellites designed to detect gravitational
radiation. The modes of relevance to LISA---the , low-order , and
-modes---have not been conclusively observed to date. We find that the
energy in these modes must be greater than about in order
to be observable above the LISA detector noise. These mode energies are larger
than generally expected, but are much smaller than the current observational
upper limits. LISA may be confusion-limited at the relevant frequencies due to
the galactic background from short-period white dwarf binaries. Present
estimates of the number of these binaries would require the solar modes to have
energies above about to be observable by LISA.Comment: 8 pages; prepared with REVTEX 3.0 LaTeX macro
Teaching physics with 670 nm diode lasers—construction of stabilized lasers and lithium cells
We describe the construction and operation of stabilized 670 nm diode lasers for use in undergraduate teaching labs. Because they emit low‐power visible radiation, 670 nm lasers are safe and aesthetically pleasing, and thus are an attractive alternative to near‐infrared diode lasers in the undergraduate laboratory. We also describe the fabrication of a robust and reliable lithium atomic vapor cell, which can be used with the 670 nm diode lasers to perform a variety of atomic physics experiments
Dissecting bombs and bursts: non-LTE inversions of low-atmosphere reconnection in SST and IRIS observations
Ellerman bombs and UV bursts are transient brightenings that are ubiquitously
observed in the lower atmospheres of active and emerging flux regions. Here we
present inversion results of SST/CRISP and CHROMIS, as well as IRIS data of
such transient events. Combining information from the Mg II h & k, Si IV and Ca
II 8542A and Ca II H & K lines, we aim to characterise their temperature and
velocity stratification, as well as their magnetic field configuration. We find
average temperature enhancements of a few thousand kelvin close to the
classical temperature minimum, but localised peak temperatures of up to
10,000-15,000 K from Ca II inversions. Including Mg II generally dampens these
temperature enhancements to below 8000 K, while Si IV requires temperatures in
excess of 10,000 K at low heights, but may also be reproduced with secondary
temperature enhancements of 35,000-60,000 K higher up. However, reproducing Si
IV comes at the expense of overestimating the Mg II emission. The line-of-sight
velocity maps show clear bi-directional jet signatures and strong correlation
with substructure in the intensity images, with slightly larger velocities
towards the observer than away. The magnetic field parameters show an
enhancement of the horizontal field co-located with the brightenings at similar
heights as the temperature increase. We are thus able to largely reproduce the
observational properties of Ellerman bombs with UV burst signature with
temperature stratifications peaking close to the classical temperature minimum.
Correctly modelling the Si IV emission in agreement with all other diagnostics
is, however, an outstanding issue. Accounting for resolution differences,
fitting localised temperature enhancements and/or performing spatially-coupled
inversions is likely necessary to obtain better agreement between all
considered diagnostics.Comment: Accepted for publication in Astronomy & Astrophysics. 24 pages, 17
figure
- …
