731 research outputs found

    A candidate supermassive binary black hole system in the brightest cluster galaxy of RBS 797

    Full text link
    The radio source at the center of the cool core galaxy cluster RBS 797 (z=0.35) is known to exhibit a misalignment of its radio jets and lobes observed at different VLA-scale, with the innermost kpc-scale jets being almost orthogonal to the radio emission which extends for tens of kpc filling the X-ray cavities. Gitti et al. suggested that this peculiar radio morphology may indicate a recurrent activity of the central radio source, where the jet orientation is changing between the different outbursts due to the effects of supermassive binary black holes (SMBBHs). We aim at unveiling the nuclear radio properties of the brightest cluster galaxy (BCG) in RBS 797 and at investigating the presence of a SMBBH system in its center. We have performed new high-resolution observations at 5 GHz with the European VLBI Network (EVN), reaching an angular resolution of 9x5 mas^2 and a sensitivity of 36 microJy/beam. We report the EVN detection of two compact components in the BCG of RBS 797, with a projected separation of ~77 pc. We can envisage two possible scenarios: the two components are two different nuclei in a close binary system, or they are the core and a knot of its jet. Both interpretations are consistent with the presence of SMBBHs. Our re-analysis of VLA archival data seems to favor the first scenario, as we detect two pairs of radio jets misaligned by ~90 degrees on the same kpc scale emanating from the central radio core. If the two outbursts are almost contemporaneous, this is clear evidence of the presence of two active SMBHs, whose radio nuclei are unresolved at VLA resolution. The nature of the double source detected by our EVN observations in the BCG of RBS 797 can be established only by future sensitive, multi-frequency VLBI observations. If confirmed, RBS 797 would be the first SMBBH system observed at medium-high redshift at VLBI resolution. (abridged)Comment: 4 pages, 2 figures, A&A Letter in pres

    Italian Science Case for ALMA Band 2+3

    Get PDF
    The Premiale Project "Science and Technology in Italy for the upgraded ALMA Observatory - iALMA" has the goal of strengthening the scientific, technological and industrial Italian contribution to the Atacama Large Millimeter/submillimeter Array (ALMA), the largest ground based international infrastructure for the study of the Universe in the microwave. One of the main objectives of the Science Working Group (SWG) inside iALMA, the Work Package 1, is to develop the Italian contribution to the Science Case for the ALMA Band 2 or Band 2+3 receiver. ALMA Band 2 receiver spans from ~67 GHz (bounded by an opaque line complex of ozone lines) up to 90 GHz which overlaps with the lower frequency end of ALMA Band 3. Receiver technology has advanced since the original definition of the ALMA frequency bands. It is now feasible to produce a single receiver which could cover the whole frequency range from 67 GHz to 116 GHz, encompassing Band 2 and Band 3 in a single receiver cartridge, a so called Band 2+3 system. In addition, upgrades of the ALMA system are now foreseen that should double the bandwidth to 16 GHz. The science drivers discussed below therefore also discuss the advantages of these two enhancements over the originally foreseen Band 2 system.Comment: 43 pages, 21 figure

    VLBI observations of nearby radio loud Active Galactic Nuclei

    Full text link
    We present an update of the parsec scale properties of the Bologna Complete Sample consisting of 95 radio sources from the B2 Catalog of Radio Sources and the Third Cambridge Revised Catalog (3CR), with z < 0.1. Thanks to recent new data we have now parsec scale images for 76 sources of the sample. Most of them show a one-sided jet structure but we find a higher fraction of two-sided sources in comparison with previous flux-limited VLBI surveys. A few peculiar sources are presented and discussed in more detail.Comment: 6 pages, 7 figures, Proceedings for "The Universe under the Microscope" (AHAR 2008), April 2008, to be published in Journal of Physics: Conference Series by Institute of Physics Publishing; R. Schoedel, A. Eckart, S. Pfalzner, and E. Ros ed

    Stormy weather in 3C 196.1: nuclear outbursts and merger events shape the environment of the hybrid radio galaxy 3C 196.1

    Full text link
    We present a multi-wavelength analysis based on archival radio, optical and X-ray data of the complex radio source 3C 196.1, whose host is the brightest cluster galaxy of a z=0.198z=0.198 cluster. HST data show Hα\alpha+[N II] emission aligned with the jet 8.4 GHz radio emission. An Hα\alpha+[N II] filament coincides with the brightest X-ray emission, the northern hotspot. Analysis of the X-ray and radio images reveals cavities located at galactic- and cluster- scales. The galactic-scale cavity is almost devoid of 8.4 GHz radio emission and the south-western Hα\alpha+[N II] emission is bounded (in projection) by this cavity. The outer cavity is co-spatial with the peak of 147 MHz radio emission, and hence we interpret this depression in X-ray surface brightness as being caused by a buoyantly rising bubble originating from an AGN outburst \sim280 Myrs ago. A \textit{Chandra} snapshot observation allowed us to constrain the physical parameters of the cluster, which has a cool core with a low central temperature \sim2.8 keV, low central entropy index \sim13 keV cm2^2 and a short cooling time of \sim500 Myr, which is <0.05<0.05 of the age of the Universe at this redshift. By fitting jumps in the X-ray density we found Mach numbers between 1.4 and 1.6, consistent with a shock origin. We also found compelling evidence of a past merger, indicated by a morphology reminiscent of gas sloshing in the X-ray residual image. Finally, we computed the pressures, enthalpies EcavE_{cav} and jet powers PjetP_{jet} associated with the cavities: Ecav7×1058E_{cav}\sim7\times10^{58} erg, Pjet1.9×1044P_{jet}\sim1.9\times10^{44} erg s1^{-1} for the inner cavity and Ecav3×1060E_{cav}\sim3\times10^{60} erg, Pjet3.4×1044P_{jet}\sim3.4\times10^{44} erg s1^{-1} for the outer cavity.Comment: 14 pages, 4 figures, ApJ accepte

    Characterising two-sided quantum correlations beyond entanglement via metric-adjusted f-correlations

    Full text link
    We introduce an infinite family of quantifiers of quantum correlations beyond entanglement which vanish on both classical-quantum and quantum-classical states and are in one-to-one correspondence with the metric-adjusted skew informations. The `quantum ff-correlations' are defined as the maximum metric-adjusted ff-correlations between pairs of local observables with the same fixed equispaced spectrum. We show that these quantifiers are entanglement monotones when restricted to pure states of qubit-qudit systems. We also evaluate the quantum ff-correlations in closed form for two-qubit systems and discuss their behaviour under local commutativity preserving channels. We finally provide a physical interpretation for the quantifier corresponding to the average of the Wigner-Yanase-Dyson skew informations.Comment: 20 pages, 1 figure. Published versio

    Modeling magnetospheric fields in the Jupiter system

    Full text link
    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter's large internal dynamo magnetic field generates a gigantic magnetosphere, which is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter's larger magnetosphere including two auroral ovals. Ganymede's magnetosphere is qualitatively different compared to the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres presented here provide quantitative insight into the processes that maintain these magnetospheres. Jupiter's magnetospheric field is approximately time-periodic at the locations of Jupiter's moons and induces secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment. Callisto's ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it is primarily been generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis

    Status of the Super-B factory Design

    Full text link
    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036^{36} cm2^{-2} sec1^{-1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Υ\Upsilon(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low βy\beta_y^\star without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications

    ALMA Observations of Asteroid 3 Juno at 60 Kilometer Resolution

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum images of the asteroid 3 Juno obtained with an angular resolution of 0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4 hr interval, which covers 60% of the 7.2 hr rotation period, approximately centered on local transit. A sequence of ten consecutive images reveals continuous changes in the asteroid's profile and apparent shape, in good agreement with the sky projection of the three-dimensional model of the Database of Asteroid Models from Inversion Techniques. We measure a geometric mean diameter of 259pm4 km, in good agreement with past estimates from a variety of techniques and wavelengths. Due to the viewing angle and inclination of the rotational pole, the southern hemisphere dominates all of the images. The median peak brightness temperature is 215pm13 K, while the median over the whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find that the brightness temperature varies across the surface with higher values correlated to the subsolar point and afternoon areas, and lower values beyond the evening terminator. The dominance of the subsolar point is accentuated in the final four images, suggesting a reduction in the thermal inertia of the regolith at the corresponding longitudes, which are possibly correlated to the location of the putative large impact crater. These results demonstrate ALMA's potential to resolve thermal emission from the surface of main belt asteroids, and to measure accurately their position, geometric shape, rotational period, and soil characteristics.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter

    ALMA Long Baseline Observations of the Strongly Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z=3.042

    Get PDF
    We present initial results of very high resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of the zz=3.042 gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These observations were carried out using a very extended configuration as part of Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at unprecedented angular resolutions as fine as 23 milliarcseconds (mas), corresponding to an un-magnified spatial scale of ~180 pc at z=3.042. The ALMA images clearly show two main gravitational arc components of an Einstein ring, with emission tracing a radius of ~1.5". We also present imaging of CO(10-9), CO(8-7), CO(5-4) and H2O line emission. The CO emission, at an angular resolution of ~170 mas, is found to broadly trace the gravitational arc structures but with differing morphologies between the CO transitions and compared to the dust continuum. Our detection of H2O line emission, using only the shortest baselines, provides the most resolved detection to date of thermal H2O emission in an extragalactic source. The ALMA continuum and spectral line fluxes are consistent with previous Plateau de Bure Interferometer and Submillimeter Array observations despite the impressive increase in angular resolution. Finally, we detect weak unresolved continuum emission from a position that is spatially coincident with the center of the lens, with a spectral index that is consistent with emission from the core of the foreground lensing galaxy.Comment: 9 pages, 5 figures and 3 tables, accepted for publication in the Astrophysical Journal Letter

    First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index (α\alpha), which ranges from α2.0\alpha\sim2.0 in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+ (1-0) which exhibits a pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion around a ~1.3 solar mass star, although complicated by absorption at low blue-shifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.Comment: 11 pages, 5 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter
    corecore