731 research outputs found
A candidate supermassive binary black hole system in the brightest cluster galaxy of RBS 797
The radio source at the center of the cool core galaxy cluster RBS 797
(z=0.35) is known to exhibit a misalignment of its radio jets and lobes
observed at different VLA-scale, with the innermost kpc-scale jets being almost
orthogonal to the radio emission which extends for tens of kpc filling the
X-ray cavities. Gitti et al. suggested that this peculiar radio morphology may
indicate a recurrent activity of the central radio source, where the jet
orientation is changing between the different outbursts due to the effects of
supermassive binary black holes (SMBBHs). We aim at unveiling the nuclear radio
properties of the brightest cluster galaxy (BCG) in RBS 797 and at
investigating the presence of a SMBBH system in its center. We have performed
new high-resolution observations at 5 GHz with the European VLBI Network (EVN),
reaching an angular resolution of 9x5 mas^2 and a sensitivity of 36
microJy/beam. We report the EVN detection of two compact components in the BCG
of RBS 797, with a projected separation of ~77 pc. We can envisage two possible
scenarios: the two components are two different nuclei in a close binary
system, or they are the core and a knot of its jet. Both interpretations are
consistent with the presence of SMBBHs. Our re-analysis of VLA archival data
seems to favor the first scenario, as we detect two pairs of radio jets
misaligned by ~90 degrees on the same kpc scale emanating from the central
radio core. If the two outbursts are almost contemporaneous, this is clear
evidence of the presence of two active SMBHs, whose radio nuclei are unresolved
at VLA resolution. The nature of the double source detected by our EVN
observations in the BCG of RBS 797 can be established only by future sensitive,
multi-frequency VLBI observations. If confirmed, RBS 797 would be the first
SMBBH system observed at medium-high redshift at VLBI resolution. (abridged)Comment: 4 pages, 2 figures, A&A Letter in pres
Italian Science Case for ALMA Band 2+3
The Premiale Project "Science and Technology in Italy for the upgraded ALMA
Observatory - iALMA" has the goal of strengthening the scientific,
technological and industrial Italian contribution to the Atacama Large
Millimeter/submillimeter Array (ALMA), the largest ground based international
infrastructure for the study of the Universe in the microwave. One of the main
objectives of the Science Working Group (SWG) inside iALMA, the Work Package 1,
is to develop the Italian contribution to the Science Case for the ALMA Band 2
or Band 2+3 receiver. ALMA Band 2 receiver spans from ~67 GHz (bounded by an
opaque line complex of ozone lines) up to 90 GHz which overlaps with the lower
frequency end of ALMA Band 3. Receiver technology has advanced since the
original definition of the ALMA frequency bands. It is now feasible to produce
a single receiver which could cover the whole frequency range from 67 GHz to
116 GHz, encompassing Band 2 and Band 3 in a single receiver cartridge, a so
called Band 2+3 system. In addition, upgrades of the ALMA system are now
foreseen that should double the bandwidth to 16 GHz. The science drivers
discussed below therefore also discuss the advantages of these two enhancements
over the originally foreseen Band 2 system.Comment: 43 pages, 21 figure
VLBI observations of nearby radio loud Active Galactic Nuclei
We present an update of the parsec scale properties of the Bologna Complete
Sample consisting of 95 radio sources from the B2 Catalog of Radio Sources and
the Third Cambridge Revised Catalog (3CR), with z < 0.1. Thanks to recent new
data we have now parsec scale images for 76 sources of the sample. Most of them
show a one-sided jet structure but we find a higher fraction of two-sided
sources in comparison with previous flux-limited VLBI surveys. A few peculiar
sources are presented and discussed in more detail.Comment: 6 pages, 7 figures, Proceedings for "The Universe under the
Microscope" (AHAR 2008), April 2008, to be published in Journal of Physics:
Conference Series by Institute of Physics Publishing; R. Schoedel, A. Eckart,
S. Pfalzner, and E. Ros ed
Stormy weather in 3C 196.1: nuclear outbursts and merger events shape the environment of the hybrid radio galaxy 3C 196.1
We present a multi-wavelength analysis based on archival radio, optical and
X-ray data of the complex radio source 3C 196.1, whose host is the brightest
cluster galaxy of a cluster. HST data show H+[N II] emission
aligned with the jet 8.4 GHz radio emission. An H+[N II] filament
coincides with the brightest X-ray emission, the northern hotspot. Analysis of
the X-ray and radio images reveals cavities located at galactic- and cluster-
scales. The galactic-scale cavity is almost devoid of 8.4 GHz radio emission
and the south-western H+[N II] emission is bounded (in projection) by
this cavity. The outer cavity is co-spatial with the peak of 147 MHz radio
emission, and hence we interpret this depression in X-ray surface brightness as
being caused by a buoyantly rising bubble originating from an AGN outburst
280 Myrs ago. A \textit{Chandra} snapshot observation allowed us to
constrain the physical parameters of the cluster, which has a cool core with a
low central temperature 2.8 keV, low central entropy index 13 keV
cm and a short cooling time of 500 Myr, which is of the age
of the Universe at this redshift. By fitting jumps in the X-ray density we
found Mach numbers between 1.4 and 1.6, consistent with a shock origin. We also
found compelling evidence of a past merger, indicated by a morphology
reminiscent of gas sloshing in the X-ray residual image. Finally, we computed
the pressures, enthalpies and jet powers associated with
the cavities: erg,
erg s for the inner cavity and erg,
erg s for the outer cavity.Comment: 14 pages, 4 figures, ApJ accepte
Characterising two-sided quantum correlations beyond entanglement via metric-adjusted f-correlations
We introduce an infinite family of quantifiers of quantum correlations beyond
entanglement which vanish on both classical-quantum and quantum-classical
states and are in one-to-one correspondence with the metric-adjusted skew
informations. The `quantum correlations' are defined as the maximum
metric-adjusted correlations between pairs of local observables with the
same fixed equispaced spectrum. We show that these quantifiers are entanglement
monotones when restricted to pure states of qubit-qudit systems. We also
evaluate the quantum correlations in closed form for two-qubit systems and
discuss their behaviour under local commutativity preserving channels. We
finally provide a physical interpretation for the quantifier corresponding to
the average of the Wigner-Yanase-Dyson skew informations.Comment: 20 pages, 1 figure. Published versio
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
Status of the Super-B factory Design
The SuperB international team continues to optimize the design of an
electron-positron collider, which will allow the enhanced study of the origins
of flavor physics. The project combines the best features of a linear collider
(high single-collision luminosity) and a storage-ring collider (high repetition
rate), bringing together all accelerator physics aspects to make a very high
luminosity of 10 cm sec. This asymmetric-energy collider
with a polarized electron beam will produce hundreds of millions of B-mesons at
the (4S) resonance. The present design is based on extremely low
emittance beams colliding at a large Piwinski angle to allow very low
without the need for ultra short bunches. Use of crab-waist
sextupoles will enhance the luminosity, suppressing dangerous resonances and
allowing for a higher beam-beam parameter. The project has flexible beam
parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring
for longitudinal polarization of the electron beam at the Interaction Point.
Optimized for best colliding-beam performance, the facility may also provide
high-brightness photon beams for synchrotron radiation applications
ALMA Observations of Asteroid 3 Juno at 60 Kilometer Resolution
We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm
continuum images of the asteroid 3 Juno obtained with an angular resolution of
0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4
hr interval, which covers 60% of the 7.2 hr rotation period, approximately
centered on local transit. A sequence of ten consecutive images reveals
continuous changes in the asteroid's profile and apparent shape, in good
agreement with the sky projection of the three-dimensional model of the
Database of Asteroid Models from Inversion Techniques. We measure a geometric
mean diameter of 259pm4 km, in good agreement with past estimates from a
variety of techniques and wavelengths. Due to the viewing angle and inclination
of the rotational pole, the southern hemisphere dominates all of the images.
The median peak brightness temperature is 215pm13 K, while the median over the
whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find
that the brightness temperature varies across the surface with higher values
correlated to the subsolar point and afternoon areas, and lower values beyond
the evening terminator. The dominance of the subsolar point is accentuated in
the final four images, suggesting a reduction in the thermal inertia of the
regolith at the corresponding longitudes, which are possibly correlated to the
location of the putative large impact crater. These results demonstrate ALMA's
potential to resolve thermal emission from the surface of main belt asteroids,
and to measure accurately their position, geometric shape, rotational period,
and soil characteristics.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
ALMA Long Baseline Observations of the Strongly Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z=3.042
We present initial results of very high resolution Atacama Large
Millimeter/submillimeter Array (ALMA) observations of the =3.042
gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These
observations were carried out using a very extended configuration as part of
Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines
of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at
unprecedented angular resolutions as fine as 23 milliarcseconds (mas),
corresponding to an un-magnified spatial scale of ~180 pc at z=3.042. The ALMA
images clearly show two main gravitational arc components of an Einstein ring,
with emission tracing a radius of ~1.5". We also present imaging of CO(10-9),
CO(8-7), CO(5-4) and H2O line emission. The CO emission, at an angular
resolution of ~170 mas, is found to broadly trace the gravitational arc
structures but with differing morphologies between the CO transitions and
compared to the dust continuum. Our detection of H2O line emission, using only
the shortest baselines, provides the most resolved detection to date of thermal
H2O emission in an extragalactic source. The ALMA continuum and spectral line
fluxes are consistent with previous Plateau de Bure Interferometer and
Submillimeter Array observations despite the impressive increase in angular
resolution. Finally, we detect weak unresolved continuum emission from a
position that is spatially coincident with the center of the lens, with a
spectral index that is consistent with emission from the core of the foreground
lensing galaxy.Comment: 9 pages, 5 figures and 3 tables, accepted for publication in the
Astrophysical Journal Letter
First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations
from the 2014 Long Baseline Campaign in dust continuum and spectral line
emission from the HL Tau region. The continuum images at wavelengths of 2.9,
1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10
AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in
the circumstellar disk surrounding the young solar analogue HL Tau, with a
pattern of bright and dark rings observed at all wavelengths. By fitting
ellipses to the most distinct rings, we measure precise values for the disk
inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees).
We obtain a high-fidelity image of the 1.0 mm spectral index (), which
ranges from in the optically-thick central peak and two
brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are
not devoid of emission, we estimate a grain emissivity index of 0.8 for the
innermost dark ring and lower for subsequent dark rings, consistent with some
degree of grain growth and evolution. Additional clues that the rings arise
from planet formation include an increase in their central offsets with radius
and the presence of numerous orbital resonances. At a resolution of 35 AU, we
resolve the molecular component of the disk in HCO+ (1-0) which exhibits a
pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion
around a ~1.3 solar mass star, although complicated by absorption at low
blue-shifted velocities. We also serendipitously detect and resolve the nearby
protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.Comment: 11 pages, 5 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
- …
