21 research outputs found
Performance metrics for characterization of a seizure detection algorithm for offline and online use
Purpose: To select appropriate previously reported performance metrics to evaluate a new seizure detection algorithm for offline and online analysis, and thus quantify any performance variation between these metrics. Methods: Traditional offline algorithms mark out any EEG section (epoch) of a seizure (event), so that neurologists only analyze the detected and adjacent sections. Thus, offline algorithms could be evaluated using number of correctly detected events, or event-based sensitivity (SEVENT), and epoch-based specificity (percentage of incorrectly detected background epochs). In contrast, online seizure detection (especially, data selection) algorithms select for transmission only the detected EEG sections and hence need to detect the entire duration of a seizure. Thus, online algorithms could be evaluated using percentage of correctly detected seizure duration, or epoch-based sensitivity (SEPOCH), and epoch-based specificity. Here, a new seizure detection algorithm is evaluated using the selected performance metrics for epoch duration ranging from 1s to 60s. Results: For 1s epochs, the area under the event-based sensitivity-specificity curve was 0.95 whilst SEPOCH achieves 0.81. This difference is not surprising, as intuitively, detecting any epoch within a seizure is easier than detecting every epoch - especially as seizures evolve over time. For longer epochs of 30s or 60s, SEVENT falls to 0.84 and 0.82 respectively and SEPOCH reduces to 0.76. Here, decreased SEVENT shows that fewer seizures are detected, possibly due to easy-to-detect short seizure sections being masked by surrounding EEG. However, detecting one long epoch constitutes a larger percentage of a seizure than a shorter one and thus SEPOCH does not decrease proportionately. Conclusions: Traditional offline and online seizure detection algorithms require different metrics to effectively evaluate their performance for their respective applications. Using such metrics, it has been shown that a decrease in performance may be expected when an offline seizure detection algorithm (especially with short epoch duration) is used for online analysis.Accepted versio
Optimal features for online seizure detection
This study identifies characteristic features in scalp EEG that simultaneously give the best discrimination between epileptic seizures and background EEG in minimally pre-processed scalp data; and have minimal computational complexity to be suitable for online, real-time analysis. The discriminative performance of 65 previously reported features has been evaluated in terms of sensitivity, specificity, area under the sensitivity-specificity curve (AUC), and relative computational complexity, on 47 seizures (split in 2,698 2 s sections) in over 172 h of scalp EEG from 24 adults. The best performing features are line length and relative power in the 12.5-25 Hz band. Relative power has a better seizure detection performance (AUC = 0.83; line length AUC = 0.77), but is calculated after the discrete wavelet transform and is thus more computationally complex. Hence, relative power achieves the best performance for offline detection, whilst line length would be preferable for online low complexity detection. These results, from the largest systematic study of seizure detection features, aid future researchers in selecting an optimal set of features when designing algorithms for both standard offline detection and new online low computational complexity detectors. © International Federation for Medical and Biological Engineering 2012
A novel phase congruency based algorithm for online data reduction in ambulatory EEG systems
Accepted versio
An introduction to future truly wearable medical devices--from application to ASIC.
Accepted versio
Discriminating between best performing features for seizure detection and data selection
Seizure detection algorithms have been developed to solve specific problems, such as seizure onset detection, occurrence detection, termination detection and data selection. It is thus inherent that each type of seizure detection algorithm would detect a different EEG characteristic (feature). However most feature comparison studies do not specify the seizure detection problem for which their respective features have been evaluated. This paper shows that the best features/algorithm bases are not the same for all types of algorithms but depend on the type of seizure detection algorithm wanted. To demonstrate this, 65 features previously evaluated for online seizure data selection are re-evaluated here for seizure occurrence detection, using performance metrics pertinent to each seizure detection type whilst keeping the testing methodology the same. The results show that the best performing features/algorithm bases for data selection and occurrence detection algorithms are different and that it is more challenging to achieve high detection accuracy for the former seizure detection type. This paper also provides a comprehensive evaluation of the performance of 65 features for seizure occurrence detection to aid future researchers in choosing the best performing feature(s) to improve seizure detection accuracy. © 2013 IEEE
