6,716 research outputs found
Optimisation of the spark gap parameters for high powered ultrasound applications
There is considerable interest in the industrial and commercial applications of high power ultrasound (HPU) generated using pulsed power techniques. These applications include metal peening, the treatment of ores and minerals before extraction, drilling technologies and the comminution and recovery of waste materials. In all of these applications, it is important to optimise the parameters of the discharge causing the shock wave in the working medium to maximise the efficiency of the treatment. In a research project at the University of Strathclyde, some applications of HPU to the treatment of waste to assist in recycling have been investigated. Two systems have been considered, slag from the manufacture of stainless steel and bottle glass. With the slag material, it is intended to separate stainless steel from the silicate matrix to permit its recovery. With the bottle glass, the intention is comminution of the material to allow it to be recycled in a more valuable form. Measurements of the efficiency of these processes have been made in terms of the mass of material processed versus the energy input as the parameters of the discharge gap have been varied. In parallel with this work, measurements have been made using pinducer sensors to determine the energy in HPU pulses generated by discharges under identical conditions. Correlations are made between the efficiency of material treatment and the intensity of the HPU pulse measured in the far field. It is hoped that this approach will allow the optimal gap parameters to be determined using pinducer measurements rather than time consuming trials based around materials processing
Including All the Lines
I present a progress report on including all the lines in the linelists,
including all the lines in the opacities, including all the lines in the model
atmosphere and spectrum synthesis calculations, producing high-resolution,
high-signal-to-noise atlases that show (not quite) all the lines, so that
finally we can determine the properties of stars from a few of the lines.Comment: 9 pages, no figures. Presented at "Dimitrifest" conference in
Boulder, Colorado, March 30 - April 3, 200
Combined experimental and computational investigations of rhodium-catalysed C-H functionalisation of pyrazoles with alkenes
Detailed experimental and computational studies have been carried out on the oxidative coupling of the alkenes C(2)H(3)Y (Y=CO(2)Me (a), Ph (b), C(O)Me (c)) with 3-aryl-5-R-pyrazoles (R=Me (1 a), Ph (1 b), CF(3) (1 c)) using a [Rh(MeCN)(3)Cp*][PF(6)](2)/Cu(OAc)(2)⋅H(2)O catalyst system. In the reaction of methyl acrylate with 1 a, up to five products (2 aa–6 aa) were formed, including the trans monovinyl product, either complexed within a novel Cu(I) dimer (2 aa) or as the free species (3 aa), and a divinyl species (6 aa); both 3 aa and 6 aa underwent cyclisation by an aza-Michael reaction to give fused heterocycles 4 aa and 5 aa, respectively. With styrene, only trans mono- and divinylation products were observed, whereas with methyl vinyl ketone, a stronger Michael acceptor, only cyclised oxidative coupling products were formed. Density functional theory calculations were performed to characterise the different migratory insertion and β-H transfer steps implicated in the reactions of 1 a with methyl acrylate and styrene. The calculations showed a clear kinetic preference for 2,1-insertion and the formation of trans vinyl products, consistent with the experimental results
Categories of insight and their correlates: An exploration of relationships among classic-type insight problems, rebus puzzles, remote associates and esoteric analogies.
A central question in creativity concerns how insightful ideas emerge. Anecdotal examples of insightful scientific and technical discoveries include Goodyear's discovery of the vulcanization of rubber, and Mendeleev's realization that there may be gaps as he tried to arrange the elements into the Periodic Table. Although most people would regard these discoveries as insightful, cognitive psychologists have had difficulty in agreeing on whether such ideas resulted from insights or from conventional problem solving processes. One area of wide agreement among psychologists is that insight involves a process of restructuring. If this view is correct, then understanding insight and its role in problem solving will depend on a better understanding of restructuring and the characteristics that describe it.
This article proposes and tests a preliminary classification of insight problems based on several restructuring characteristics: the need to redefine spatial assumptions, the need to change defined forms, the degree of misdirection involved, the difficulty in visualizing a possible solution, the number of restructuring sequences in the problem, and the requirement for figure-ground type reversals. A second purpose of the study was to compare performance on classic spatial insight problems with two types of verbal tests that may be related to insight, the Remote Associates Test (RAT), and rebus puzzles. In doing so, we report on the results of a survey of 172 business students at the University of Waikato in New Zealand who completed classic-type insight, RAT and rebus problems
Factors affecting the operation of laser-triggered gas switch (LTGS) with multi-electrode spark gap
Multi-electrode spark switches can be used for switching applications at elevated voltages or for command triggering. Symmetrical field graded electrodes allow the electrical stress across individual gaps to be controlled, thus maximising the hold off voltage and reducing switch pre-fire. The paper considers some aspects of multielectrode switch design and their influence on switching behavior. Non-symmetrical, uni-directional electrode topologies can be employed with advantages over traditional symmetrical design. The choice of working gas and gas pressure can influence switching performance in terms of delay-time and jitter. Transient analysis of switch characteristics has been undertaken in order to understand multi-electrode switching
Recent Activity Before The International Court Of Justice: Trend Or Cycle?
Following the United States refusal to participate in the Nicaragua case,\u27 and its subsequent withdrawal from the so-called optional clause, , a great deal of pessimism surrounded the future of the International Court of Justice.3 Less than a decade later, and only half way through the decade of international law, it would appear, to paraphrase Mark Twain, that reports of the court\u27s demise were greatly exaggerated
Efficacy of antimicrobial 405 nm blue-light for inactivation of airborne bacteria
Airborne transmission of infectious organisms is a considerable concern within the healthcare environment. A number of novel methods for ‘whole room’ decontamination, including antimicrobial 405 nm blue light, are being developed. To date, research has focused on its effects against surface-deposited contamination; however it is important to also establish its efficacy against airborne bacteria. This study demonstrates evidence of the dose-response kinetics of airborne bacterial contamination when exposed to 405 nm light.Bacterial aerosols of Staphylococcus epidermidis, generated using a 6-Jet Collison nebuliser, were introduced into an aerosol chamber designed to maintain prolonged airborne suspension and circulation. Aerosolized bacteria were exposed to increasing doses of 405 nm light, and air samples were extracted from the chamber using a BioSampler liquid impinger, with viability analysed using pour-plate culture. Initial results have demonstrated successful aerosol inactivation, with a 98.4% reduction achieved with 1-hour exposure to low irradiance (11.9 mWcm-2) 405 nm light (P=<0.001). Natural decay of the suspended aerosol was observed, however this was significantly less than achieved with light treatment (P=0.004). Overall, results have provided early evidence of the susceptibility of bacterial aerosols to 405 nm light. Although less germicidally efficient than UV-light, 405 nm light treatment offers benefits in terms of increased safety for human exposure, and eradication of microbes regardless of antibiotic resistance. Such benefits provide advantages for a number of applications including ‘whole room’ environmental decontamination, in which reducing levels of airborne bacteria should reduce the number of infections arising from airborne contamination
The potential for dietary factors to prevent or treat osteoarthritis
Osteoarthritis (OA) is a degenerative joint disease for which there are no disease-modifying drugs. It is a leading cause of disability in the UK. Increasing age and obesity are both major risk factors for OA and the health and economic burden of this disease will increase in the future. Focusing on compounds from the habitual diet that may prevent the onset or slow the progression of OA is a strategy that has been under-investigated to date. An approach that relies on dietary modification is clearly attractive in terms of risk/benefit and more likely to be implementable at the population level. However, before undertaking a full clinical trial to examine potential efficacy, detailed molecular studies are required in order to optimise the design. This review focuses on potential dietary factors that may reduce the risk or progression of OA, including micronutrients, fatty acids, flavonoids and other phytochemicals. It therefore ignores data coming from classical inflammatory arthritides and nutraceuticals such as glucosamine and chondroitin. In conclusion, diet offers a route by which the health of the joint can be protected and OA incidence or progression decreased. In a chronic disease, with risk factors increasing in the population and with no pharmaceutical cure, an understanding of this will be crucial
Cosmological Radiation Hydrodynamics with ENZO
We describe an extension of the cosmological hydrodynamics code ENZO to
include the self-consistent transport of ionizing radiation modeled in the
flux-limited diffusion approximation. A novel feature of our algorithm is a
coupled implicit solution of radiation transport, ionization kinetics, and gas
photoheating, making the timestepping for this portion of the calculation
resolution independent. The implicit system is coupled to the explicit
cosmological hydrodynamics through operator splitting and solved with scalable
multigrid methods. We summarize the numerical method, present a verification
test on cosmological Stromgren spheres, and then apply it to the problem of
cosmological hydrogen reionization.Comment: 14 pages, 3 figures, to appear in Recent Directions in Astrophysical
Quantitative Spectroscopy and Radiation Hydrodynamics, Ed. I. Hubeny,
American Institute of Physics (2009
- …
