135 research outputs found
Superconductivity of disordered Dirac fermions
We study the effect of disorder on massless, spinful Dirac fermions in two
spatial dimensions with attractive interactions, and show that the combination
of disorder and attractive interactions is deadly to the Dirac semimetal phase.
First, we derive the zero temperature phase diagram of a clean Dirac fermion
system with tunable doping level ({\mu}) and attraction strength (g). We show
that it contains two phases: a superconductor and a Dirac semimetal. Then, we
show that arbitrarily weak disorder destroys the Dirac semimetal, turning it
into a superconductor. We discuss the strength of the superconductivity for
both long range and short range disorder. For long range disorder, the
superconductivity is exponentially weak in the disorder strength. For short
range disorder, a uniform mean field analysis predicts that superconductivity
should be doubly exponentially weak in the disorder strength. However, a more
careful treatment of mesoscopic fluctuations suggests that locally
superconducting puddles should form at a much higher temperature, and should
establish global phase coherence at a temperature that is only exponentially
small in weak disorder. We also discuss the effect of disorder on the quantum
critical point of the clean system, building in the effect of disorder through
a replica field theory. We show that disorder is a relevant perturbation to the
supersymmetric quantum critical point. We expect that in the presence of
attractive interactions, the flow away from the critical point ends up in the
superconducting phase, although firm conclusions cannot be drawn since the
renormalization group analysis flows to strong coupling. We argue that although
we expect the quantum critical point to get buried under a superconducting
phase, signatures of the critical point may be visible in the finite
temperature quantum critical regime.Comment: Added some discussion, particularly pertaining to proximity effec
Nonlocal edge state transport in the quantum spin Hall state
We present direct experimental evidence for nonlocal transport in HgTe
quantum wells in the quantum spin Hall regime, in the absence of any external
magnetic field. The data conclusively show that the non-dissipative quantum
transport occurs through edge channels, while the contacts lead to
equilibration between the counter-propagating spin states at the edge. We show
that the experimental data agree quantitatively with the theory of the quantum
spin Hall effect.Comment: 13 pages, 4 figure
Disorder-Induced Multiple Transition involving Z2 Topological Insulator
Effects of disorder on two-dimensional Z2 topological insulator are studied
numerically by the transfer matrix method. Based on the scaling analysis, the
phase diagram is derived for a model of HgTe quantum well as a function of
disorder strength and magnitude of the energy gap. In the presence of sz
non-conserving spin-orbit coupling, a finite metallic region is found that
partitions the two topologically distinct insulating phases. As disorder
increases, a narrow-gap topologically trivial insulator undergoes a series of
transitions; first to metal, second to topological insulator, third to metal,
and finally back to trivial insulator. We show that this multiple transition is
a consequence of two disorder effects; renormalization of the band gap, and
Anderson localization. The metallic region found in the scaling analysis
corresponds roughly to the region of finite density of states at the Fermi
level evaluated in the self-consistent Born approximation.Comment: 5 pages, 5 figure
Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials
Recent progress in understanding the topological properties of condensed
matter has led to the discovery of time-reversal invariant topological
insulators. Because of limitations imposed by nature, topologically non-trivial
electronic order seems to be uncommon except in small-band-gap semiconductors
with strong spin-orbit interactions. In this Article we show that artificial
electromagnetic structures, known as metamaterials, provide an attractive
platform for designing photonic analogues of topological insulators. We
demonstrate that a judicious choice of the metamaterial parameters can create
photonic phases that support a pair of helical edge states, and that these edge
states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure
Moduli Spaces of Cold Holographic Matter
We use holography to study (3+1)-dimensional N=4 supersymmetric Yang-Mills
theory with gauge group SU(Nc), in the large-Nc and large-coupling limits,
coupled to a single massless (n+1)-dimensional hypermultiplet in the
fundamental representation of SU(Nc), with n=3,2,1. In particular, we study
zero-temperature states with a nonzero baryon number charge density, which we
call holographic matter. We demonstrate that a moduli space of such states
exists in these theories, specifically a Higgs branch parameterized by the
expectation values of scalar operators bilinear in the hypermultiplet scalars.
At a generic point on the Higgs branch, the R-symmetry and gauge group are
spontaneously broken to subgroups. Our holographic calculation consists of
introducing a single probe Dp-brane into AdS5 times S^5, with p=2n+1=7,5,3,
introducing an electric flux of the Dp-brane worldvolume U(1) gauge field, and
then obtaining explicit solutions for the worldvolume fields dual to the scalar
operators that parameterize the Higgs branch. In all three cases, we can
express these solutions as non-singular self-dual U(1) instantons in a
four-dimensional space with a metric determined by the electric flux. We
speculate on the possibility that the existence of Higgs branches may point the
way to a counting of the microstates producing a nonzero entropy in holographic
matter. Additionally, we speculate on the possible classification of
zero-temperature, nonzero-density states described holographically by probe
D-branes with worldvolume electric flux.Comment: 56 pages, 8 PDF images, 4 figure
Green's function formalism for spin transport in metal-insulator-metal heterostructures
Effect of time of administration on cholesterol-lowering by psyllium: a randomized cross-over study in normocholesterolemic or slightly hypercholesterolemic subjects
BACKGROUND: Reports of the use of psyllium, largely in hypercholesterolemic men, have suggested that it lowers serum cholesterol as a result of the binding of bile acids in the intestinal lumen. Widespread advertisements have claimed an association between the use of soluble fibre from psyllium seed husk and a reduced risk of coronary heart disease. Given the purported mechanism of cholesterol-lowering by psyllium, we hypothesized that there would be a greater effect when psyllium is taken with breakfast than when taken at bedtime. Secondarily, we expected to confirm a cholesterol-lowering effect of psyllium in subjects with "average" cholesterol levels. METHODS: Sixteen men and 47 women ranging in age from 18 to 77 years [mean 53 +/- 13] with LDL cholesterol levels that were normal or slightly elevated but acceptable for subjects at low risk of coronary artery disease were recruited from general gastroenterology and low risk lipid clinics. Following a one month dietary stabilization period, they received an average daily dose of 12.7 g of psyllium hydrophilic mucilloid, in randomized order, for 8 weeks in the morning and 8 weeks in the evening. Change from baseline was determined for serum total cholesterol, LDL, HDL and triglycerides. RESULTS: Total cholesterol for the "AM first" group at baseline, 8 and 16 weeks was 5.76, 5.77 and 5.80 mmol/L and for the "PM first" group the corresponding values were 5.47, 5.61 and 5.57 mmol/L. No effect on any lipid parameter was demonstrated for the group as a whole or in any sub-group analysis. CONCLUSION: The timing of psyllium administration had no effect on cholesterol-lowering and, in fact, no cholesterol-lowering was observed. Conclusions regarding the effectiveness of psyllium for the prevention of heart disease in the population at large may be premature
- …
