7,109 research outputs found
On the thermal dynamic behaviour of the helium-cooled DEMO fusion reactor
The EU-DEMO conceptual design is being conducted among research institutions and universities from 26 countries of European Union, Switzerland and Ukraine. Its mission is to realise electricity from nuclear fusion reaction by 2050. As DEMO has been conceived to deliver net electricity to the grid, the choice of the Breeding Blanket (BB) coolant plays a pivotal role in the reactor design having a strong influence on plant operation, safety and maintenance. In particular, due to the pulsed nature of the heat source, the Primary Heat Transfer System (PHTS) becomes a very important actor of the Balance of Plant (BoP) together with the Power Conversion System (PCS). Moreover, aiming to mitigate the potential negative impact of plasma pulsing on BoP equipment, for the DEMO plant is also being investigated a "heat transfer chain" option which envisages an Intermediate Heat Transfer System (IHTS) equipped with an Energy Storage System (ESS) between PHTS and PCS. Within this framework, a preliminary study has been carried out to analyse the thermal dynamic behaviour of the IHTS system for the Helium-Cooled Pebble Bed (HCPB) BB concept during pulse/dwell transition which should be still considered as the normal operating mode of a fusion power plant. Starting from preliminary thermal-hydraulic calculations made in order to size the main BoP components, the global performances of DEMO BoP have been quantitatively assessed focusing the attention on the attitude of the whole IHTS to smooth the sudden power variations which come from the plasma. The paper describes criteria and rationale followed to develop a numerical model which manages to simulate simple transient scenarios of DEMO BoP. Results of numerical simulations are presented and critically discussed in order to point out the main issues that DEMO BoP has to overcome to achieve a viable electricity power output
A cellular automaton for the factor of safety field in landslides modeling
Landslide inventories show that the statistical distribution of the area of
recorded events is well described by a power law over a range of decades. To
understand these distributions, we consider a cellular automaton to model a
time and position dependent factor of safety. The model is able to reproduce
the complex structure of landslide distribution, as experimentally reported. In
particular, we investigate the role of the rate of change of the system
dynamical variables, induced by an external drive, on landslide modeling and
its implications on hazard assessment. As the rate is increased, the model has
a crossover from a critical regime with power-laws to non power-law behaviors.
We suggest that the detection of patterns of correlated domains in monitored
regions can be crucial to identify the response of the system to perturbations,
i.e., for hazard assessment.Comment: 4 pages, 3 figure
Propiedades de transporte de hormigón con cemento puzolánico
Existen estructuras emplazadas en medios agresivos que requieren una adecuada resistencia al ingreso de agentes agresivos para completar su vida útil con un nivel aceptable de serviciabilidad. Adicionalmente a las buenas prácticas constructivas, resulta necesario trabajar sobre el diseño de la mezcla de hormigón, de manera de lograr óptimos resultados a un costo menor. El cemento portland puzolánico (CPP) aparece como una de las opciones más apropiadas conjugando durabilidad y economía. El presente trabajo tiene como objetivo evaluar distintas propiedades relacionadas con la penetrabilidad de agentes externos a la estructura porosa de hormigones de distinto nivel resistente elaborados con cemento CPP. Se utilizaron método de ensayo para la evaluación del transporte de líquidos y gases, tales como el de penetración de agua a presión, absorción capilar, permeabilidad al aire y migración de cloruro. Los resultados obtenidos a 28 días, mostraron efectos sumamente positivos de la acción puzolánica de la adición como reemplazo parcial del clínquer, resaltando la potencialidad del uso del cemento CPP para ambientes agresivos.Concrete structures located in aggressive environments must have enough resistance against the ingress of aggressive agents so that they can achieve their service life with acceptable serviceability.
In addition to suitable construction practices, concrete mix design must be studied to achieve the best results at low cost. Pozzolanic Portland cement (PPC) seems one of the most appropriate options, which combines durability and economy. This paper aims to evaluate properties related to the penetration of external agents through the pore structure of PPC concrete with dissimilar strength levels. Liquid and gas transport was evaluated by tests methods such as water penetration under pressure, sorptivity, air permeability and chloride migration. At 28 days, the obtained results showed very positive pozzolanic effect of the admixture as partial replacement of clinker, which shows the potentiality of using PPC for aggressive environments
Resistance-based probabilistic design by order statistics for an oil and gas deep-water well casing string affected by wear during kick load
Deep-water wells for oil and gas extraction make structural components, such as casing and tubing, work in extremely harsh environmental conditions that accelerate component degradation and increase failure probability. Therefore, it is important to properly design casing strings under these operative circumstances (Baraldi et al., 2012)
Finite driving rate and anisotropy effects in landslide modeling
In order to characterize landslide frequency-size distributions and
individuate hazard scenarios and their possible precursors, we investigate a
cellular automaton where the effects of a finite driving rate and the
anisotropy are taken into account. The model is able to reproduce observed
features of landslide events, such as power-law distributions, as
experimentally reported. We analyze the key role of the driving rate and show
that, as it is increased, a crossover from power-law to non power-law behaviors
occurs. Finally, a systematic investigation of the model on varying its
anisotropy factors is performed and the full diagram of its dynamical behaviors
is presented.Comment: 8 pages, 9 figure
Therapeutic sequences in patients with grade 1−2 neuroendocrine tumors (NET): an observational multicenter study from the ELIOS group
Purpose: Many different treatments are suggested by guidelines to treat grade 1−2 (G1−G2) neuroendocrine tumors (NET). However, a precise therapeutic algorithm has not yet been established. This study aims at identifying and comparing the main therapeutic sequences in G1−G2 NET. Methods: A retrospective observational Italian multicenter study was designed to collect data on therapeutic sequences in NET. Median progression-free survival (PFS) was compared between therapeutic sequences, as well as the number and grade of side effects and the rate of dose reduction/treatment discontinuation. Results: Among 1182 patients with neuroendocrine neoplasia included in the ELIOS database, 131 G1–G2 gastroenteropancreatic, lung and unknown primary NET, unresectable or persistent/relapsing after surgery, treated with ≥2 systemic treatments, were included. Four main therapeutic sequences were identified in 99 patients: (A) somatostatin analogs (SSA) standard dose to SSA high dose (n = 36), (B) SSA to everolimus (n = 31), (C) SSA to chemotherapy (n = 17), (D) SSA to peptide receptor radionuclide therapy (PRRT) (n = 15). Median PFS of the second-line treatment was not reached in sequence A, 33 months in sequence B, 20 months in sequence C, 30 months in sequence D (p = 0.16). Both total number and severity of side effects were significantly higher in sequences B and C than A and D (p = 0.04), as well as the rate of dose reduction/discontinuation (p = 0.03). Conclusions: SSA followed by SSA high dose, everolimus, chemotherapy or PRRT represent the main therapeutic sequences in G1−G2 NET. Median PFS was not significantly different between sequences. However, the sequences with SSA high dose or PRRT seem to be better tolerated than sequences with everolimus or chemotherapy
Benign hereditary chorea: clinical and neuroimaging features in an Italian family.
Abstract: Benign hereditary chorea is an autosomal domi- nant disorder characterized by early onset nonprogressive chorea, caused by mutations of the thyroid transcription factor-1 (TITF-1) gene. Clinical heterogeneity has been reported and thyroid and respiratory abnormalities may be present. We describe 3 patients of an Italian family carrying the S145X mutation in the TITF-1 gene with mild motor delay, childhood onset dyskinesias, and subtle cognitive impairment. A child in the third generation pre- sented with congenital hypothyroidism and neonatal respi- ratory distress. Imaging studies in 2 patients showed mild ventricular enlargement and empty sella at magnetic reso- nance imaging and hypometabolism of basal ganglia and cortex at 18-Fluoro-2-deoxy-glucose positron emission tomography
- …
