2,808 research outputs found

    Searching for sub-millisecond pulsars from highly polarized radio sources

    Full text link
    Pulsars are among the most highly polarized sources in the universe. The NVSS has catalogued 2 million radio sources with linear polarization measurements, from which we have selected 253 sources, with polarization percentage greater than 25%, as targets for pulsar searches. We believe that such a sample is not biased by selection effects against ultra-short spin or orbit periods. Using the Parkes 64m telescope, we conducted searches with sample intervals of 0.05 ms and 0.08 ms, sensitive to submillisecond pulsars. Unfortunately we did not find any new pulsars.Comment: 2 pages 1 figure. To appear in "Young Neutron Stars and Their Environments" (IAU Symposium 218, ASP Conference Proceedings), eds F. Camilo and B. M. Gaensle

    An improved solar wind electron-density model for pulsar timing

    Full text link
    Variations in the solar wind density introduce variable delays into pulsar timing observations. Current pulsar timing analysis programs only implement simple models of the solar wind, which not only limit the timing accuracy, but can also affect measurements of pulsar rotational, astrometric and orbital parameters. We describe a new model of the solar wind electron density content which uses observations from the Wilcox Solar Observatory of the solar magnetic field. We have implemented this model into the tempo2 pulsar timing package. We show that this model is more accurate than previous models and that these corrections are necessary for high precision pulsar timing applications.Comment: Accepted by ApJ, 13 pages, 4 figure

    A Search for Pulsars in Quiescent Soft X-Ray Transients. I

    Get PDF
    We have carried out a deep search at 1.4 GHz for radio pulsed emission from six soft X-ray transient sources observed during their X-ray quiescent phase. The commonly accepted model for the formation of the millisecond radio pulsars predicts the presence of a rapidly rotating, weakly magnetized neutron star in the core of these systems. The sudden drop in accretion rate associated with the end of an X-ray outburst causes the Alfv\`en surface to move outside the light cylinder, allowing the pulsar emission process to operate. No pulsed signal was detected from the sources in our sample. We discuss several mechanisms that could hamper the detection and suggest that free-free absorption from material ejected from the system by the pulsar radiation pressure could explain our null result.Comment: accepted by Ap

    Representations of Time Coordinates in FITS

    Full text link
    In a series of three previous papers, formulation and specifics of the representation of World Coordinate Transformations in FITS data have been presented. This fourth paper deals with encoding time. Time on all scales and precisions known in astronomical datasets is to be described in an unambiguous, complete, and self-consistent manner. Employing the well--established World Coordinate System (WCS) framework, and maintaining compatibility with the FITS conventions that are currently in use to specify time, the standard is extended to describe rigorously the time coordinate. World coordinate functions are defined for temporal axes sampled linearly and as specified by a lookup table. The resulting standard is consistent with the existing FITS WCS standards and specifies a metadata set that achieves the aims enunciated above.Comment: FITS WCS Paper IV: Time. 27 pages, 11 table

    The 69 ms Radio Pulsar Near the Supernova Remnant RCW 103

    Get PDF
    We report the detection of the radio pulsar counterpart to the 69 ms X-ray pulsar discovered near the supernova remnant RCW 103 (G332.4-0.4). Our detection confirms that the pulsations arise from a rotation-powered neutron star, which we name PSR J1617-5055. The observed barycentric period derivative confirms that the pulsar has a characteristic age of only 8 kyr, the sixth smallest of all known pulsars. The unusual apparent youth of the pulsar and its proximity to a young remnant requires that an association be considered. Although the respective ages and distances are consistent within substantial uncertainties, the large inferred pulsar transverse velocity is difficult to explain given the observed pulsar velocity distribution, the absence of evidence for a pulsar wind nebula, and the symmetry of the remnant. Rather, we argue that the objects are likely superposed on the sky; this is reasonable given the complex area. Without an association, the question of where is the supernova remnant left behind following the birth of PSR J1617-5055 remains open. We also discuss a possible association between PSR J1617-5055 and the gamma-ray source 2CG 333+01. Though an association is energetically plausible, it is unlikely given that EGRET did not detect 2CG 333+01.Comment: 18 pages, 2 encapsulated Postscript figures, uses AAS LaTeX style files. Accepted for publication in The Astrophysical Journal Letter
    corecore