104 research outputs found
Metabolomics reveals biomarkers in human urine and plasma to predict cytochrome P450 2D6 (CYP2D6) activity.
Individualized assessment of cytochrome P450 2D6 (CYP2D6) activity is usually performed through phenotyping following administration of a probe drug to measure the enzyme's activity. To avoid any iatrogenic harm (allergic drug reaction, dosing error) related to the probe drug, the development of non-burdensome tools for real-time phenotyping of CYP2D6 could significantly contribute to precision medicine. This study focuses on the identification of markers of the CYP2D6 enzyme in human biofluids using an LC-high-resolution mass spectrometry-based metabolomic approach.
Plasma and urine samples from healthy volunteers were analysed before and after intake of a daily dose of paroxetine 20 mg over 7 days. CYP2D6 genotyping and phenotyping, using single oral dose of dextromethorphan 5 mg, were also performed in all participants.
We report four metabolites of solanidine and two unknown compounds as possible novel CYP2D6 markers. Mean relative intensities of these features were significantly reduced during the inhibition session compared with the control session (n = 37). Semi-quantitative analysis showed that the largest decrease (-85%) was observed for the ion m/z 432.3108 normalized to solanidine (m/z 398.3417). Mean relative intensities of these ions were significantly higher in the CYP2D6 normal-ultrarapid metabolizer group (n = 37) compared with the poor metabolizer group (n = 6). Solanidine intensity was more than 15 times higher in CYP2D6-deficient individuals compared with other volunteers.
The applied untargeted metabolomic strategy identified potential novel markers capable of semi-quantitatively predicting CYP2D6 activity, a promising discovery for personalized medicine
Integration of Wnt-inhibitory activity and structural novelty scoring results to uncover novel bioactive natural products: new Bicyclo[3.3.1]non-3-ene-2,9-diones from the leaves of Hymenocardia punctata
In natural products (NPs) research, methods for the efficient prioritization of natural extracts (NEs) are key for discovering novel bioactive NPs. In this study a biodiverse collection of 1,600 NEs, previously analyzed by UHPLC-HRMS2 metabolite profiling was screened for Wnt pathway regulation. The results of the biological screening drove the selection of a subset of 30 non-toxic NEs with an inhibitory IC50 ≤ 5 μg/mL. To increase the chance of finding structurally novel bioactive NPs, Inventa, a computational tool for automated scoring of NEs based on structural novelty was used to mine the HRMS2 analysis and dereplication results. After this, four out of the 30 bioactive NEs were shortlisted by this approach. The most promising sample was the ethyl acetate extract of the leaves of Hymenocardia punctata (Phyllanthaceae). Further phytochemical investigations of this species resulted in the isolation of three known prenylated flavones (3, 5, 7) and ten novel bicyclo[3.3.1]non-3-ene-2,9-diones (1, 2, 4, 6, 8–13), named Hymenotamayonins. Assessment of the Wnt inhibitory activity of these compounds revealed that two prenylated flavones and three novel bicyclic compounds showed interesting activity without apparent cytotoxicity. This study highlights the potential of combining Inventa’s structural novelty scores with biological screening results to effectively discover novel bioactive NPs in large NE collections
Normal phase HPLC profiling of the acetylcholinesterase activity in apolar plant extracts
Among nineteen evaluated Clusiaceous species, one stem bark CH2Cl2 crude extract was selected based on a significant inhibition of acetylcholinesterase (AChE) using the micro-dilution Ellman\u27s method [1]. A normal phase HPLC profiling with micro-fractionation of this extract provided discrete fractions every 20 seconds. In order to obtain a comprehensive profiling of AChE activity all microfractions were tested [2] in dilution assay (Ellman) as well as by bioautography (the Fast Blue B salt method). Furthermore the potency of inhibition was evaluated both by keeping the genuine concentration within the extract and after normalisation to a standard concentration level. From the active fractions five pure compounds were isolated and identified. The different methods of sample preparation and biological evaluation associated with normal-phase micro-fractionation of plant extracts are critically discussed
Fourier and wavelet transform analysis, a tool for visualising regular patterns in DNA
A correlation function that compares each base in a DNA sequence to its various neighbours and which is subsequently processed by Fourier and wavelet transforms has been developed. The procedure has been applied to sequences from the human chromosome 22, to nef genes from various HIV clones and to myosin heavy chain DNA. It permits to readily visualize regular features in DNA which are related to the stability of heteroduplexes formed upon strand slippage
Chloride, glutathiones, and insect-derived elicitors introduced into the xylem trigger electrical signaling.
Ricca assays allow the direct introduction of compounds extracted from plants or the organisms that attack them into the leaf vasculature. Using chromatographic fractionation of Arabidopsis (Arabidopsis thaliana) leaf extracts, we found glutamate was the most active low mass elicitor of membrane depolarization. However, other known elicitors of membrane depolarization are generated in the wound response. These include unstable aglycones generated by glucosinolate (GSL) breakdown. None of the aglycone-derived GSL-breakdown products, including nitriles and isothiocyanates, that we tested using Ricca assays triggered electrical activity. Instead, we found that glutathione and the GSL-derived compound sulforaphane glutathione triggered membrane depolarizations. These findings identify a potential link between GSL breakdown and glutathione in the generation of membrane depolarizing signals. Noting that the chromatographic fractionation of plant extracts can dilute or exchange ions, we found that Cl- caused glutamate receptor-like3.3-dependent membrane depolarizations. In summary, we show that, in addition to glutamate, glutathione derivatives as well as chloride ions will need to be considered as potential elicitors of wound-response membrane potential change. Finally, by introducing aphid (Brevicoryne brassicae) extracts or the flagellin-derived peptide flg22 into the leaf vasculature we extend the use of Ricca assays for the exploration of insect/plant and bacteria/plant interactions
High resolution antifungal HPLC profiling for the early identification of compounds in plants from French Polynesia
Boosting the antifungal drug discovery by halogenating plant extracts to obtain bioactive 'unnatural' natural products
- …
