1,983 research outputs found
Recommended from our members
Does Competition Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency
This paper explores the empirical effects of competition on technical efficiency in the context of electricity industry restructuring. Restructuring programs adopted by many U.S. states made utilities residual claimants to cost savings and increased their exposure to competitive markets. We estimate the impact of these changes on annual generating plant-level input demand for non-fuel operating expenses, the number of employees and fuel use. We find that municipally-owned plants, whose owners were for the most part unaffected by restructuring, experienced the smallest efficiency gains over the past decade. Investor-owned utility plants in states that restructured their wholesale electricity markets had the largest reductions in nonfuel operating expenses and employment, while investor-owned plants in nonrestructuring states fell between these extremes. The analysis also highlights the substantive importance of treating the simultaneity of input and output decisions, which we do through an instrumental variables approach
Origin of electron-hole asymmetry in the scanning tunneling spectrum of
We have developed a material specific theoretical framework for modelling
scanning tunneling spectroscopy (STS) of high temperature superconducting
materials in the normal as well as the superconducting state. Results for
(Bi2212) show clearly that the tunneling process
strongly modifies the STS spectrum from the local density of states (LDOS) of
the orbital of Cu. The dominant tunneling channel to the surface
Bi involves the orbitals of the four neighbouring Cu atoms. In
accord with experimental observations, the computed spectrum displays a
remarkable asymmetry between the processes of electron injection and
extraction, which arises from contributions of Cu and other orbitals
to the tunneling current.Comment: 5 pages, 4 figures, published in PR
Single-Dirac-Cone topological surface states in TlBiSe2 class of Topological Insulators
We have investigated several strong spin-orbit coupling ternary chalcogenides
related to the (Pb,Sn)Te series of compounds. Our first-principles calculations
predict the low temperature rhombohedral ordered phase in TlBiTe2, TlBiSe2, and
TlSbX2 (X=Te, Se, S) to be topologically Kane-Mele Z2 = -1 nontrivial. We
identify the specific surface termination that realizes the single Dirac cone
through first-principles surface state computations. This termination minimizes
effects of dangling bonds making it favorable for photoemission (ARPES)
experiments. Our analysis predicts that thin films of these materials would
harbor novel 2D quantum spin Hall states, and support odd-parity topological
superconductivity. For a related work also see arXiv:1003.2615v1. Experimental
ARPES results will be published elsewhere.Comment: Accepted for publication in Phys. Rev. Lett. (2010). Submitted March
201
How different Fermi surface maps emerge in photoemission from Bi2212
We report angle-resolved photoemission spectra (ARPES) from the Fermi energy
() over a large area of the () plane using 21.2 eV and 32 eV
photons in two distinct polarizations from an optimally doped single crystal of
BiSrCaCuO (Bi2212), together with extensive
first-principles simulations of the ARPES intensities. The results display a
wide-ranging level of accord between theory and experiment and clarify how
myriad Fermi surface (FS) maps emerge in ARPES under various experimental
conditions. The energy and polarization dependences of the ARPES matrix element
help disentangle primary contributions to the spectrum due to the pristine
lattice from those arising from modulations of the underlying tetragonal
symmetry and provide a route for separating closely placed FS sheets in low
dimensional materials.Comment: submitted to PR
Induced superconductivity in noncuprate layers of the BiSrCaCuO high-temperature superconductor: Modeling of scanning tunneling spectra
We analyze how the coherence peaks observed in Scanning Tunneling
Spectroscopy (STS) of cuprate high temperature superconductors are transferred
from the cuprate layer to the oxide layers adjacent to the STS microscope tip.
For this purpose, we have carried out a realistic multiband calculation for the
superconducting state of BiSrCaCuO (Bi2212) assuming a
short range d-wave pairing interaction confined to the nearest-neighbor Cu
orbitals. The resulting anomalous matrix elements of the Green's
function allow us to monitor how pairing is then induced not only within the
cuprate bilayer but also within and across other layers and sites. The symmetry
properties of the various anomalous matrix elements and the related selection
rules are delineated.Comment: 9 pages, 2 figures. Accepted for publication in Phys. Rev.
Structural, magnetic, dielectric and mechanical properties of (Ba,Sr)MnO ceramics
Ceramic samples, produced by conventional sintering method in ambient air,
6H-SrMnO(6H-SMO), 15R-BaMnO(15R-BMO),
4H-BaSrMnO(4H-BSMO) were studied. In the XRD measurements
for SMO the new anomalies of the lattice parameters at 600-800 K range and the
increasing of thermal expansion coefficients with a clear maximum in a vicinity
at 670 K were detected. The Nel phase transition for BSMO was
observed at =250 K in magnetic measurements and its trace was detected in
dielectric, FTIR, DSC, and DMA experiments. The enthalpy and entropy changes of
the phase transition for BSMO at were determined as 17.5 J/mol and 70
mJ/K mol, respectively. The activation energy values and relaxation times
characteristic for relaxation processes were determined from the Arrhenius law.
Results of ab initio simulations showed that the contribution of the exchange
correlation energy to the total energy is about 30%.Comment: 12 pages, 12 figure
Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping, has been interpreted as evidence that the pseudogap
must be due to precursor pairing. We suggest an alternative explanation, that
the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the
Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the
pseudogap could actually be due to any of a number of nesting instabilities,
including charge or spin density waves or more exotic phases. We present a
detailed analysis of this competition for one particular model: the pinned
Balseiro-Falicov model of competing charge density wave and (s-wave)
superconductivity. We show that most of the anomalous features of both
tunneling and photoemission follow naturally from the model, including the
smooth crossover, the general shape of the pseudogap phase diagram, the
shrinking Fermi surface of the pseudogap phase, and the asymmetry of the
tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1
and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be
described in detail by this model, but we suggest a simple generalization to
account for inhomogeneity, which does provide an adequate description. We show
that it should be possible, with a combination of photoemission and tunneling,
to demonstrate the extent of pinning of the Fermi level to the Van Hove
singularity. A preliminary analysis of the data suggests pinning in the
underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
- …
