5,023 research outputs found
Novel Gas-Doping Technique for Local Spectroscopic Measurements in Pulsed-Power Systems
A novel method for doping plasmas in pulsed-power experiments with gaseous
elements has been developed. A fast gas valve, a nozzle, and a skimmer are used
to generate an ultrasonic gas beam that is injected into a planar-geometry
microsecond plasma-opening-switch (POS). An array of ionization probes with
relatively high spatial and temporal resolutions was developed for diagnosing
the absolute injected-gas density and its spatial profile. The properties of
the gas column were also studied using spectroscopy of line emission that
results from the interaction of the doped gas with the POS prefilled plasma.
The doped column is found to have a width of ~1 cm and a density of
(0.8-1.7)*10^14 cm-3. Observations of characteristic emission lines from the
doped atoms and their ions allow for various spectroscopic measurements, such
as the magnetic field from Zeeman splitting and the ion velocity distributions
from Doppler shifts, that are local in three dimensions. It is shown that this
gas doping technique can also be used to study proton-dominated plasmas that
cannot be studied with simple emission spectroscopy due to the lack of light
emitting ions. The variety of gases used with this method, together with the
small valve dimensions and its fast opening, make it potentially useful for
broad diagnostics of various short-duration plasma experiments.Comment: 5 pages, 7 figures in 1 pdf file from Rev. Sci. Inst
Thermal conduction and particle transport in strong MHD turbulence, with application to galaxy-cluster plasmas
We investigate field-line separation in strong MHD turbulence analytically
and with direct numerical simulations. We find that in the
static-magnetic-field approximation the thermal conductivity in galaxy clusters
is reduced by a factor of about 5-10 relative to the Spitzer thermal
conductivity of a non-magnetized plasma. We also estimate how the thermal
conductivity would be affected by efficient turbulent resistivity.Comment: Major revision: higher resolution simulations lead to significantly
different conclusions. 26 pages, 10 figure
Acceleration of energetic particles by large-scale compressible magnetohydrodynamic turbulence
Fast particles diffusing along magnetic field lines in a turbulent plasma can
diffuse through and then return to the same eddy many times before the eddy is
randomized in the turbulent flow. This leads to an enhancement of particle
acceleration by large-scale compressible turbulence relative to previous
estimates in which isotropic particle diffusion is assumed.Comment: 13 pages, 3 figures, accepted for publication in Ap
Origin matters: diversity affects the performance of alien invasive species but not of native species
At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species
Fitness consequences of occasional outcrossing in a functionally asexual plant (Oenothera biennis)
Many clonal organisms occasionally outcross, but the long?term consequences of such infrequent events are often unknown. During five years, representing three to five plant generations, we followed 16 experimental field populations of the forb, Oenothera biennis, originally planted with the same 18 original genotypes. Oenothera biennis usually self fertilizes, which, due to its genetic system (permanent translocation heterozygosity), results in seeds that are clones of the maternal plant. However, rare outcrossing produces genetically novel offspring (but without recombination or increased heterozygosity). We sought to understand whether novel genotypes produced through natural outcrossing had greater fecundity or different multigenerational dynamics compared to our original genotypes. We further assessed whether any differences in fitness or abundances through time between original and novel genotypes were exaggerated in the presence vs. absence of insect herbivores. Over the course of the experiment, we genotyped >12,500 plants using microsatellite DNA markers to identify and track the frequency of specific genotypes and estimated fecundity on a subset (>3,000) of plants. The effective outcrossing rate was 7.3% in the first year and ultimately 50% of the plants were of outcrossed origin by the final year of the experiment. Lifetime fruit production per plant was on average 32% higher across all novel genotypes produced via outcrossing compared to the original genotypes, and this fecundity advantage was significantly enhanced in populations lacking herbivores. Among 43 novel genotypes that were abundant enough to phenotype with replication, plants produced nearly 30% more fruits than the average of their specific two parental genotypes, and marginally more fruits (8%) than their most fecund parent. Mean per capita fecundity of novel genotypes predicted their relative frequencies at the end of the experiment. Novel genotypes increased more dramatically in herbivore?present compared to suppressed populations (45% vs. 27% of all plants), countering the increased competition from dandelions (Taraxacum officinale) that resulted from herbivore suppression. Increased interspecific competition likely also lead to the lower realized fitness of novel vs. original genotypes in herbivore?suppressed populations. These results demonstrate that rare outcrossing and the generation of novel genotypes can create high?fecundity progeny, with the biotic environment influencing the dynamical outcome of such advantages.This study was supported by a grant to A. A. Agrawal from NSF DEB-0950231. M. T. J. Johnson received funding from NSERC. J. L. Maron was supported by NSF DEB-1553518
Cascade of Complexity in Evolving Predator-Prey Dynamics
We simulate an individual-based model that represents both the phenotype and
genome of digital organisms with predator-prey interactions. We show how
open-ended growth of complexity arises from the invariance of genetic evolution
operators with respect to changes in the complexity, and that the dynamics
which emerges is controlled by a non-equilibrium critical point. The mechanism
is analogous to the development of the cascade in fluid turbulence.Comment: 5 pages, 3 figures; added comments on system size scaling and
turbulence analogy, added error estimates of data collapse parameters.
Slightly enhanced from the version which will appear in PR
Origin matters: diversity affects the performance of alien invasive species but not of native species
At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species
Using XDAQ in Application Scenarios of the CMS Experiment
XDAQ is a generic data acquisition software environment that emerged from a
rich set of of use-cases encountered in the CMS experiment. They cover not the
deployment for multiple sub-detectors and the operation of different processing
and networking equipment as well as a distributed collaboration of users with
different needs. The use of the software in various application scenarios
demonstrated the viability of the approach. We discuss two applications, the
tracker local DAQ system for front-end commissioning and the muon chamber
validation system. The description is completed by a brief overview of XDAQ.Comment: Conference CHEP 2003 (Computing in High Energy and Nuclear Physics,
La Jolla, CA
The CMS Event Builder
The data acquisition system of the CMS experiment at the Large Hadron
Collider will employ an event builder which will combine data from about 500
data sources into full events at an aggregate throughput of 100 GByte/s.
Several architectures and switch technologies have been evaluated for the DAQ
Technical Design Report by measurements with test benches and by simulation.
This paper describes studies of an EVB test-bench based on 64 PCs acting as
data sources and data consumers and employing both Gigabit Ethernet and Myrinet
technologies as the interconnect. In the case of Ethernet, protocols based on
Layer-2 frames and on TCP/IP are evaluated. Results from ongoing studies,
including measurements on throughput and scaling are presented.
The architecture of the baseline CMS event builder will be outlined. The
event builder is organised into two stages with intelligent buffers in between.
The first stage contains 64 switches performing a first level of data
concentration by building super-fragments from fragments of 8 data sources. The
second stage combines the 64 super-fragments into full events. This
architecture allows installation of the second stage of the event builder in
steps, with the overall throughput scaling linearly with the number of switches
in the second stage. Possible implementations of the components of the event
builder are discussed and the expected performance of the full event builder is
outlined.Comment: Conference CHEP0
- …
