14,318 research outputs found
A Study of Holographic Renormalization Group Flows in d=6 and d=3
We present an explicit study of the holographic renormalization group (RG) in
six dimensions using minimal gauged supergravity. By perturbing the theory with
the addition of a relevant operator of dimension four one flows to a
non-supersymmetric conformal fixed point. There are also solutions describing
non-conformal vacua of the same theory obtained by giving an expectation value
to the operator. One such vacuum is supersymmetric and is obtained by using the
true superpotential of the theory. We discuss the physical acceptability of
these vacua by applying the criteria recently given by Gubser for the four
dimensional case and find that those criteria give a clear physical picture in
the six dimensional case as well. We use this example to comment on the role of
the Hamilton-Jacobi equations in implementing the RG. We conclude with some
remarks on AdS_4 and the status of three dimensional superconformal theories
from squashed solutions of M-theory.Comment: 15 pages, 5 figures, V2: minor change
Multidomain switching in the ferroelectric nanodots
Controlling the polarization switching in the ferroelectric nanocrystals,
nanowires and nanodots has an inherent specificity related to the emergence of
depolarization field that is associated with the spontaneous polarization. This
field splits the finite-size ferroelectric sample into polarization domains.
Here, based on 3D numerical simulations, we study the formation of 180 polarization domains in a nanoplatelet, made of uniaxial ferroelectric
material, and show that in addition to the polarized monodomain state, the
multidomain structures, notably of stripe and cylindrical shapes, can arise and
compete during the switching process. The multibit switching protocol between
these configurations may be realized by temperature and field variations
Emerging Non-Anomalous Baryonic Symmetries in the AdS_5/CFT_4 Correspondence
We study the breaking of baryonic symmetries in the AdS_5/CFT_4
correspondence for D3 branes at Calabi-Yau three-fold singularities. This
leads, for particular VEVs, to the emergence of non-anomalous baryonic
symmetries during the renormalization group flow. We claim that these VEVs
correspond to critical values of the B-field moduli in the dual supergravity
backgrounds. We study in detail the C^3/Z_3 orbifold, the cone over F_0 and the
C^3/Z_5 orbifold. For the first two examples, we study the dual supergravity
backgrounds that correspond to the breaking of the emerging baryonic symmetries
and identify the expected Goldstone bosons and global strings in the infra-red.
In doing so we confirm the claim that the emerging symmetries are indeed
non-anomalous baryonic symmetries.Comment: 65 pages, 15 figures;v2: minor changes, published versio
Caracterização de latossolo: um estudo prévio para a realização de ensaios de sorção de antimicrobianos promotores do crescimento.
The Mn site in Mn-doped Ga-As nanowires: an EXAFS study
We present an EXAFS study of the Mn atomic environment in Mn-doped GaAs
nanowires. Mn doping has been obtained either via the diffusion of the Mn used
as seed for the nanowire growth or by providing Mn during the growth of
Au-induced wires. As a general finding, we observe that Mn forms chemical bonds
with As but is not incorporated in a substitutional site. In Mn-induced GaAs
wires, Mn is mostly found bonded to As in a rather disordered environment and
with a stretched bond length, reminiscent of that exhibited by MnAs phases. In
Au-seeded nanowires, along with stretched Mn-As coordination we have found the
presence of Mn in a Mn-Au intermetallic compound.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in Semiconductor Science and Technology. IOP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from it. The definitive
publisher-authenticated version is available online at
doi:10.1088/0268-1242/27/8/08500
Z-extremization and F-theorem in Chern-Simons matter theories
The three dimensional exact R symmetry of N=2 SCFTs extremizes the partition
function localized on a three sphere. Here we verify this statement at weak
coupling. We give a detailed analysis for two classes of models. The first one
is an SU(N)_k gauge theory at large k with both fundamental and adjoint matter
fields, while the second is a flavored version of the ABJ theory, where the CS
levels are large but they do not necessarily sum up to zero. We study in both
cases superpotential deformations and compute the R charges at different fixed
points. When these fixed points are connected by an RG flow we explicitly
verify that the free energy decreases at the endpoints of the flow between the
fixed points, corroborating the conjecture of an F-theorem in three dimensions.Comment: 28 pages, 3 figures, JHEP.cls, minor corrections, references adde
Avaliação do grau de humidificação da matéria orgânica de solo irrigado com efluente por espectroscopia de fluorescência na região do UV/Vis e determinação de carbono via úmida.
A Note on Einstein Sasaki Metrics in D \ge 7
In this paper, we obtain new non-singular Einstein-Sasaki spaces in
dimensions D\ge 7. The local construction involves taking a circle bundle over
a (D-1)-dimensional Einstein-Kahler metric that is itself constructed as a
complex line bundle over a product of Einstein-Kahler spaces. In general the
resulting Einstein-Sasaki spaces are singular, but if parameters in the local
solutions satisfy appropriate rationality conditions, the metrics extend
smoothly onto complete and non-singular compact manifolds.Comment: Latex, 13 page
Supersymmetric AdS vacua and separation of scales
The moduli space of the supersymmetric massive IIA AdS4xS2(B4) vacua, where
S2(B4) is a two-sphere bundle over a four-dimensional Kaehler-Einstein base B4,
includes three independent parameters which can be thought of as corresponding
to the sizes of AdS4, B4 and the S2 fiber. It might therefore be expected that
these vacua do not suffer from the absence of scale separation. We show that
the independence of the geometric moduli survives flux quantization. However,
we uncover an attractor behavior whereby all sizes flow to equality in some
neighborhood of spacetime independently of the initial conditions set by the
parameters of the solution. This is further confirmed by the study of the ratio
of internal to external scalar curvatures. We also show that the asymptotic
Kaluza-Klein spectrum of a ten-dimensional massive scalar is governed by a
scale of the order of the AdS4 radius. Furthermore we point out that the
curvature ratio in supersymmetric IIA AdS4 vacua with rigid SU(3) structure is
of order one, indicating the absence of scale separation in this large class of
vacua.Comment: 21 pages, 2 figures; v2 typos correcte
- …
