74 research outputs found

    Caspase-8 binding to cardiolipin in giant unilamellar vesicles provides a functional docking platform for bid

    Get PDF
    Caspase-8 is involved in death receptor-mediated apoptosis in type II cells, the proapoptotic programme of which is triggered by truncated Bid. Indeed, caspase-8 and Bid are the known intermediates of this signalling pathway. Cardiolipin has been shown to provide an anchor and an essential activating platform for caspase-8 at the mitochondrial membrane surface. Destabilisation of this platform alters receptor-mediated apoptosis in diseases such as Barth Syndrome, which is characterised by the presence of immature cardiolipin which does not allow caspase-8 binding. We used a simplified in vitro system that mimics contact sites and/or cardiolipin-enriched microdomains at the outer mitochondrial surface in which the platform consisting of caspase-8, Bid and cardiolipin was reconstituted in giant unilamellar vesicles. We analysed these vesicles by flow cytometry and confirm previous results that demonstrate the requirement for intact mature cardiolipin for caspase-8 activation and Bid binding and cleavage. We also used confocal microscopy to visualise the rupture of the vesicles and their revesiculation at smaller sizes due to alteration of the curvature following caspase-8 and Bid binding. Biophysical approaches, including Laurdan fluorescence and rupture/tension measurements, were used to determine the ability of these three components (cardiolipin, caspase-8 and Bid) to fulfil the minimal requirements for the formation and function of the platform at the mitochondrial membrane. Our results shed light on the active functional role of cardiolipin, bridging the gap between death receptors and mitochondria

    Emerging single cell endothelial heterogeneity supports sprouting tumour angiogenesis and growth

    Get PDF
    Blood vessels supplying tumors are often dysfunctional and generally heterogeneous. The mechanisms underlying this heterogeneity remain poorly understood. Here, using multicolor lineage tracing, in vivo time-lapse imaging and single cell RNA sequencing in a mouse glioma model, we identify tumour-specific blood endothelial cells that originate from cells expressing the receptor for colony stimulating factor 1, Csf1r, a cytokine which controls macrophage biology. These Csf1r lineage endothelial cells (CLECs) form up to 10% of the tumour vasculature and express, besides classical blood endothelial cell markers, a gene signature that is distinct from brain endothelium but shares similarities with lymphatic endothelial cell populations. in silico analysis of pan-cancer single cell RNAseq datasets highlights the presence of a comparable subpopulation in the endothelium of a wide spectrum of human tumours. We show that CLECs actively contribute to sprouting and remodeling of tumour blood vessels and that selective depletion of CLECs reduces vascular branching and tumour growth. Our findings indicate that a non-tumour resident Csf1r-positive population is recruited to tumours, differentiates into blood endothelial cells to contribute to vascularization and, thereby, tumour growth

    Dynamic endothelial cell rearrangements drive developmental vessel regression

    Get PDF
    Patterning of functional blood vessel networks is achieved by pruning of superfluous connections. The cellular and molecular principles of vessel regression are poorly understood. Here we show that regression is mediated by dynamic and polarized migration of endothelial cells, representing anastomosis in reverse. Establishing and analyzing the first axial polarity map of all endothelial cells in a remodeling vascular network, we propose that balanced movement of cells maintains the primitive plexus under low shear conditions in a metastable dynamic state. We predict that flow-induced polarized migration of endothelial cells breaks symmetry and leads to stabilization of high flow/shear segments and regression of adjacent low flow/shear segments.status: publishe

    Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field

    Get PDF
    Giant unilamellar vesicles with diameters ranging from 10 to 60 microns were obtained by the swelling of phospholipid bilayers in water in the presence of an AC electric field. This technique leads to a homogeneous population of perfectly spherical and unilamellar vesicles, as revealed by phase-contrast optical microscopy and freeze-fracture electron microscopy. Freshly prepared vesicles had a high surface tension with no visible surface undulations. Undulations started spontaneously after several hours of incubation or were triggered by the application of a small osmotic pressure. Partially deflated giant vesicles could undergo further shape change if asymmetrical bilayers were formed by adding lyso compounds to the external leaflet or by imposing a transmembrane pH gradient that selectively accumulates on one leaflet phosphatidylglycerol. Fluorescence photobleaching with 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids or labeled dextran trapped within the vesicles enabled the measurement of the membrane continuity in the dumbbell-shaped vesicles. In all instances phospholipids diffused from one lobe to the other, but soluble dextran sometimes was unable to traverse the neck. This suggests that the diameter of the connecting neck may be variable
    corecore