8,351 research outputs found

    High-Speed Rail Projects in the United States: Identifying the Elements of Success-Part 2, MTI 06-03

    Get PDF
    In August 2005, the Mineta Transportation Institute issued the report, High-Speed Rail Projects in the United States: Identifying the Elements for Success. The report noted that since the 1960s, highspeed ground transportation (HSGT) has “held the promise of fast, convenient, and environmentally sound travel for distances between 40 and 600 miles.” After briefly discussing the different experiences with HSGT between the United States and its Asian and European counterparts, the report proceeded to review three U.S. cases—Florida, California, and the Pacific Northwest—as a means for identifying lessons learned for successfully implementing high-speed rail (HSR) in the United States. This report is, in essence, volume 2 of the previous study. Also using a comparative case study approach, this effort adds to the earlier work with three additional cases—the Chicago Hub, the Keystone Corridor, and the Northeast Corridor (NEC). As with the earlier report, the goal of this study is to identify lessons learned for successfully implementing HSR in the United States. Given the early stages of most of these projects, “success” is defined by whether a given HSR project is still actively pursuing development or funding. However, in the case of the Northeast Corridor, a fuller discussion of success is provided since HSR has been implemented on that corridor for some time now

    Extremal Correlators in the AdS/CFT Correspondence

    Full text link
    The non-renormalization of the 3-point functions trXk1trXk2trXk3tr X^{k_1} tr X^{k_2} tr X^{k_3} of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in the extremal case, e.g. k_1 = k_2 + k_3. First, the supergravity calculation involves analytic continuation in the k_i variables to define the product of a vanishing bulk coupling and an infinite integral over AdS. Second, extremal correlators are uniquely sensitive to mixing of the single-trace operators trXktr X^k with protected multi-trace operators in the same representation of SU(4). We show that the calculation of extremal correlators from supergravity is subject to the same subtlety of regularization known for the 2-point functions, and we present a careful method which justifies the analytic continuation and shows that supergravity fields couple to single traces without admixture. We also study extremal n-point functions of chiral primary operators, and argue that Type IIB supergravity requires that their space-time form is a product of n-1 two-point functions (as in the free field approximation) multiplied by a non-renormalized coefficient. This non-renormalization property of extremal n-point functions is a new prediction of the AdS/CFT correspondence. As a byproduct of this work we obtain the cubic couplings tϕϕt \phi \phi and sϕϕs \phi \phi of fields in the dilaton and 5-sphere graviton towers of Type IIB supergravity on AdS5×S5AdS_5 \times S^5.Comment: 26 pages, LateX, no figure

    Patient safety and estimation of renal function in patients prescribed new oral anticoagulants for stroke prevention in atrial fibrillation

    Get PDF
    OBJECTIVE: In clinical trials of dabigatran and rivaroxaban for stroke prevention in atrial fibrillation (AF), drug eligibility and dosing were determined using the Cockcroft-Gault equation to estimate creatine clearance as a measure of renal function. This cross-sectional study aimed to compare whether using estimated glomerular filtration rate (eGFR) by the widely available and widely used Modified Diet in Renal Disease (MDRD) equation would alter prescribing or dosing of the renally excreted new oral anticoagulants. PARTICIPANTS: Of 4712 patients with known AF within a general practitioner-registered population of 930 079 in east London, data were available enabling renal function to be calculated by both Cockcroft-Gault and MDRD methods in 4120 (87.4%). RESULTS: Of 4120 patients, 2706 were <80 years and 1414 were ≥80 years of age. Among those ≥80 years, 14.9% were ineligible for dabigatran according to Cockcroft-Gault equation but would have been judged eligible applying MDRD method. For those <80 years, 0.8% would have been incorrectly judged eligible for dabigatran and 5.3% would have received too high a dose. For rivaroxaban, 0.3% would have been incorrectly judged eligible for treatment and 13.5% would have received too high a dose. CONCLUSIONS: Were the MDRD-derived eGFR to be used instead of Cockcroft-Gault in prescribing these new agents, many elderly patients with AF would either incorrectly become eligible for them or would receive too high a dose. Safety has not been established using the MDRD equation, a concern since the risk of major bleeding would be increased in patients with unsuspected renal impairment. Given the potentially widespread use of these agents, particularly in primary care, regulatory authorities and drug companies should alert UK doctors of the need to use the Cockcroft-Gault formula to calculate eligibility for and dosing of the new oral anticoagulants in elderly patients with AF and not rely on the MDRD-derived eGFR

    Ground state and constrained domain walls in Gd/Fe multilayers

    Full text link
    The magnetic ground state of antiferromagnetically coupled Gd/Fe multilayers and the evolution of in-plane domain walls is modelled with micromagnetics. The twisted state is characterised by a rapid decrease of the interface angle with increasing magnetic field. We found that for certain ratios M(Fe):M(Gd), the twisted state is already present at low fields. However, the magnetic ground state is not only determined by the ratio M(Fe):M(Gd) but also by the thicknesses of the layers, that is the total moments of the layer. The dependence of the magnetic ground state is explained by the amount of overlap of the domain walls at the interface. Thicker layers suppress the Fe aligned and the Gd aligned state in favour of the twisted state. Whereas ultrathin layers exclude the twisted state, since wider domain walls can not form in these ultrathin layers

    Comments on black holes I: The possibility of complementarity

    Get PDF
    We comment on a recent paper of Almheiri, Marolf, Polchinski and Sully who argue against black hole complementarity based on the claim that an infalling observer 'burns' as he approaches the horizon. We show that in fact measurements made by an infalling observer outside the horizon are statistically identical for the cases of vacuum at the horizon and radiation emerging from a stretched horizon. This forces us to follow the dynamics all the way to the horizon, where we need to know the details of Planck scale physics. We note that in string theory the fuzzball structure of microstates does not give any place to 'continue through' this Planck regime. AMPS argue that interactions near the horizon preclude traditional complementarity. But the conjecture of 'fuzzball complementarity' works in the opposite way: the infalling quantum is absorbed by the fuzzball surface, and it is the resulting dynamics that is conjectured to admit a complementary description.Comment: 34 pages, 6 figures, v3: clarifications & references adde

    Non-radial oscillations in M-giant semi-regular variables: Stellar models and Kepler observations

    Full text link
    The success of asteroseismology relies heavily on our ability to identify the frequency patterns of stellar oscillation modes. For stars like the Sun this is relatively easy because the mode frequencies follow a regular pattern described by a well-founded asymptotic relation. When a solar like star evolves off the main sequence and onto the red giant branch its structure changes dramatically resulting in changes in the frequency pattern of the modes. We follow the evolution of the adiabatic frequency pattern from the main sequence to near the tip of the red giant branch for a series of models. We find a significant departure from the asymptotic relation for the non-radial modes near the red giant branch tip, resulting in a triplet frequency pattern. To support our investigation we analyze almost four years of Kepler data of the most luminous stars in the field (late K and early M type) and find that their frequency spectra indeed show a triplet pattern dominated by dipole modes even for the most luminous stars in our sample. Our identification explains previous results from ground-based observations reporting fine structure in the Petersen diagram and sub ridges in the period-luminosity diagram. Finally, we find `new ridges' of non-radial modes with frequencies below the fundamental mode in our model calculations, and we speculate they are related to f modes.Comment: 8 page, 5 figures, accepted by ApJL (ApJ, 788, L10

    A New Class of non-Hermitian Quantum Hamiltonians with PT Symmetry

    Full text link
    In a remarkable development Bender and coworkers have shown that it is possible to formulate quantum mechanics consistently even if the Hamiltonian and other observables are not Hermitian. Their formulation, dubbed PT quantum mechanics, replaces hermiticity by another set of requirements, notably that the Hamiltonian should be invariant under the discrete symmetry PT, where P denotes parity and T denotes time reversal. All prior work has focused on the case that time reversal is even (T^2 = 1). We generalize the formalism to the case of odd time reversal (T^2 = -1). We discover an analogue of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism. Odd time reversal symmetry applies to fermionic systems including quarks and leptons and a plethora of models in nuclear, atomic and condensed matter physics. PT quantum mechanics makes it possible to enlarge the set of possible Hamiltonians that physicists could deploy to describe fundamental physics beyond the standard model or for the effective description of condensed matter phenomena.Comment: Replaced submitted version with accepted version; to appear in Phys Rev

    Persistent and radiation-induced currents in distorted quantum rings

    Get PDF
    Persistent and radiation-induced currents in distorted narrow quantum rings are theoretically investigated. We show that ring distorsions can be described using a geometrical potential term. We analyse the effect of this term on the current induced by a magnetic flux (persistent current) and by a polarized coherent electromagnetic field (radiation-induced current). The strongest effects in persistent currents are observed for distorted rings with a small number of electrons. The distortion smoothes the current oscillations as a function of the magnetic flux and changes the temperature dependence of the current amplitude. For radiation-induced currents, the distortion induces an ac component in the current and affects its dependence on the radiation frequency and intensity
    corecore