80 research outputs found

    A Dominant-Negative Approach That Prevents Diphthamide Formation Confers Resistance to Pseudomonas Exotoxin A and Diphtheria Toxin

    Get PDF
    Diphtheria toxin (DT), Pseudomonas aeruginosa Exotoxin A (ETA) and cholix toxin from Vibrio cholerae share the same mechanism of toxicity; these enzymes ADP-rybosylate elongation factor-2 (EF-2) on a modified histidine residue called diphthamide, leading to a block in protein synthesis. Mutant Chinese hamster ovary cells that are defective in the formation of diphthamide have no distinct phenotype except their resistance to DT and ETA. These observations led us to predict that a strategy that prevents the formation of diphthamide to confer DT and ETA resistance is likely to be safe. It is well documented that Dph1 and Dph2 are involved in the first biochemical step of diphthamide formation and that these two proteins interact with each other. We hypothesized that we could block diphthamide formation with a dominant negative mutant of either Dph1 or Dph2. We report in this study the first cellular-targeted strategy that protects against DT and ETA toxicity. We have generated Dph2(C-), a dominant-negative mutant of Dph2, that could block very efficiently the formation of diphthamide. Cells expressing Dph2(C-) were 1000-fold more resistant to DT than parental cells, and a similar protection against Pseudomonas exotoxin A was also obtained. The targeting of a cellular component with this approach should have a reduced risk of generating resistance as it is commonly seen with antibiotic treatments

    Ribosome Display Selection of a Murine IgG1 Fab Binding Affibody Molecule Allowing Species Selective Recovery Of Monoclonal Antibodies

    Get PDF
    Affinity reagents recognizing constant parts of antibody molecules are invaluable tools in immunotechnology applications, including purification, immobilization, and detection of immunoglobulins. In this article, murine IgG1, the primary isotype of monoclonal antibodies (mAbs) was used as target for selection of novel binders from a combinatorial ribosome display (RD) library of 1011 affibody molecules. Four rounds of selection using three different mouse IgG1 mAbs as alternating targets resulted in the identification of binders with broad mIgG1 recognition and dissociation constants (KD) in the low nanomolar to low micromolar range. For one of the binders, denoted Zmab25, competition in binding to full length mIgG1 by a streptococcal protein G (SPG) fragment and selective affinity capture of mouse IgG1 Fab fragments after papain cleavage of a full mAb suggest that an epitope functionally overlapping with the SPG-binding site in the CH1 domain of mouse IgG1 had been addressed. Interestingly, biosensor-based binding experiments showed that neither human IgG1 nor bovine Ig, the latter present in fetal bovine serum (FBS) was recognized by Zmab25. This selective binding profile towards murine IgG1 was successfully exploited in species selective recovery of two different mouse mAbs from complex samples containing FBS, resembling a hybridoma culture supernatant

    An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides

    Get PDF
    BACKGROUND: The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA. METHODOLOGY/PRINCIPAL FINDINGS: We have now used a competition assay to assess the efficiency of tRNA-aminoacylation of these analogs. We have also used a series of peptide translation assays to measure the efficiency with which these analogs are incorporated into peptides. The translation apparatus tolerates most side chain derivatives, a few alpha,alpha disubstituted, N-methyl and alpha-hydroxy derivatives, but no beta-amino acids. We show that over 50 unnatural amino acids can be incorporated into peptides by ribosomal translation. Using a set of analogs that are efficiently charged and translated we were able to prepare individual peptides containing up to 13 different unnatural amino acids. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that a diverse array of unnatural building blocks can be translationally incorporated into peptides. These building blocks provide new opportunities for in vitro selections with highly modified drug-like peptides

    Feedback regulation of the spc operon in Escherichia coli: translational coupling and mRNA processing.

    No full text
    The spc operon of Escherichia coli encodes 10 ribosomal proteins in the order L14, L24, L5, S14, S8, L6, L18, S5, L30, and L15. This operon is feedback regulated by S8, which binds near the translation start site of L5 and inhibits translation of L5 directly and that of the distal genes indirectly. We constructed plasmids carrying a major portion of the spc operon genes under lac transcriptional control. The plasmids carried a point mutation in the S8 target site which abolished regulation and resulted in overproduction of plasmid-encoded ribosomal proteins upon induction. We showed that alteration of the AUG start codon of L5 to UAG decreased the synthesis rates of plasmid-encoded distal proteins, as well as L5, by approximately 20-fold, with a much smaller (if any) effect on mRNA synthesis rates, indicating coupling of the distal cistrons' translation with the translation of L5. This conclusion was also supported by experiments in which S8 was overproduced in trans. In this case, there was a threefold reduction in the synthesis rates of chromosome-encoded L5 and the distal spc operon proteins, but no decrease in the mRNA synthesis rate. These observations also suggest that transcription from ribosomal protein promoters may be special, perhaps able to overcome transcription termination signals. We also analyzed the state of ribosomal protein mRNA after overproduction of S8 in these experiments and found that repression of ribosomal protein synthesis was accompanied by stimulation of processing (and degradation) of spc operon mRNA. The possible role of mRNA degradation in tightening the regulation is discussed

    Quantum dots as new-generation fluorochromes for FISH: an appraisal

    Get PDF
    In the field of nanotechnology, quantum dots (QDs) are a novel class of inorganic fluorochromes composed of nanometre-scale crystals made of a semiconductor material. Given the remarkable optical properties that they possess, they have been proposed as an ideal material for use in fluorescent in-situ hybridization (FISH). That is, they are resistant to photobleaching and they excite at a wide range of wavelengths but emit light in a very narrow band that can be controlled by particle size and thus have the potential for multiplexing experiments. The principal aim of this study was to compare the potential of QDs against traditional organic fluorochromes in both indirect (i.e. QD-conjugated streptavidin) and direct (i.e. synthesis of QD-labelled FISH probes) detection methods. In general, the indirect experiments met with a degree of success, with FISH applications demonstrated for chromosome painting, BAC mapping and use of oligonucleotide probes on human and avian chromosomes/nuclei. Many of the reported properties of QDs (e.g. brightness, 'blinking' and resistance to photobleaching) were observed. On the other hand, signals were more frequently observed where the chromatin was less condensed (e.g. around the periphery of the chromosome or in the interphase nucleus) and significant bleed-through to other filters was apparent (despite the reported narrow emission spectra). Most importantly, experimental success was intermittent (sometimes even in identical, parallel experiments) making attempts to improve reliability difficult. Experimentation with direct labelling showed evidence of the generation of QD-DNA constructs but no successful FISH experiments. We conclude that QDs are not, in their current form, suitable materials for FISH because of the lack of reproducibility of the experiments; we speculate why this might be the case and look forward to the possibility of nanotechnology forming the basis of future molecular cytogenetic applications

    DPH5, a methyltransferase gene required for diphthamide biosynthesis in Saccharomyces cerevisiae.

    No full text
    A mutant of Saccharomyces cerevisiae defective in the S-adenosylmethionine (AdoMet)-dependent methyltransferase step of diphthamide biosynthesis was selected by intracellular expression of the F2 fragment of diphtheria toxin (DT) and shown to belong to complementation group DPH5. The DPH5 gene was cloned, sequenced, and found to encode a 300-residue protein with sequence similarity to bacterial AdoMet:uroporphyrinogen III methyltransferases, enzymes involved in cobalamin (vitamin B12) biosynthesis. Both DPH5 and AdoMet:uroporphyrinogen III methyltransferases lack sequence motifs commonly found in other methyltransferases and may represent a new family of AdoMet:methyltransferases. The DPH5 protein was produced in Escherichia coli and shown to be active in methylation of elongation factor 2 partially purified from the dph5 mutant. A null mutation of the chromosomal DPH5 gene did not affect cell viability, in agreement with other studies indicating that diphthamide is not required for cell survival. The dph5 null mutant survived expression of three enzymically attenuated DT fragments but was killed by expression of fully active DT fragment A. Consistent with these results, elongation factor 2 from the dph5 null mutant was found to have weak ADP-ribosyl acceptor activity, which was detectable only in the presence of high concentrations of fragment A
    corecore