162 research outputs found
Anti-Allergic Cromones Inhibit Histamine and Eicosanoid Release from Activated Human and Murine Mast Cells by Releasing Annexin A1
PMCID: PMC3601088This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Effects of Hypericum perforatum extract on oxaliplatin-induced neurotoxicity: in vitro evaluations
Effect of Vitis vinifera hydroalcoholic extract against oxaliplatin neurotoxicity: in vitro and in vivo evidence
Ionic Strength Responsive Sulfonated Polystyrene Opals
Stimuli-responsive photonic crystals (PCs) represent an intriguing class of smart materials very promising for sensing applications. Here, selective ionic strength responsive polymeric PCs are reported. They are easily fabricated by partial sulfonation of polystyrene opals, without using toxic or expensive monomers and etching steps. The color of the resulting hydrogel-like ordered structures can be continuously shifted over the entire visible range (405-760 nm) by changing the content of ions over an extremely wide range of concentration (from about 70 μM to 4 M). The optical response is completely independent from pH and temperature, and the initial color can be fully recovered by washing the sulfonated opals with pure water. These new smart photonic materials could find important applications as ionic strength sensors for environmental monitoring as well as for healthcare screening
One-step functionalization of mildly and strongly reduced graphene oxide with maleimide: An experimental and theoretical investigation of the Diels-Alder [4+2] cycloaddition reaction
For large-scale graphene applications, such as the production of polymer-graphene nanocomposites, exfoliated graphene oxide (GO) and its reduced form (rGO) are presently considered to be very suitable starting materials, showing enhanced chemical reactivity with respect to pristine graphene, in addition to suitable electronic properties (i.e., tunable band gap). Among other chemical processes, a suitable way to obtain surface decoration of graphene is through a direct one-step Diels-Alder (DA) reaction, e.g. through the use of dienophile or diene moieties. However, the feasibility and extent of decoration largely depends on the specific graphene microstructure that in the case of rGO sheets is not easy to control and generally presents a high degree of inhomogeneity owing to various on-plane functionalization (e.g., epoxide and hydroxyl groups) or in-plane lattice defects. In an effort to gain some insights into the covalent functionalization of variably reduced GO samples, we present a combined experimental and theoretical study on the DA cycloaddition reaction of maleimide, a dienophile functional unit well-suited for chemical conjugation of polymers and macromolecules. In particular, we considered both mildly and strongly reduced GOs. Using thermogravimetry, Raman and X-Ray photoelectron spectroscopy, and elemental analysis we show evidence of variable chemical reactivity of rGO as a function of the residual oxygen content. Moreover, from quantum mechanical calculations carried out at the DFT level on different graphene reaction sites, we provide a more detailed molecular view to interpret experimental findings and to assess the reactivity series of different graphene modifications. This journal i
Intra-articular route for the system of molecules 14g1862 from centella asiatica: Pain relieving and protective effects in a rat model of osteoarthritis
Ultraconformable Temporary Tattoo Electrodes for Electrophysiology
Electrically interfacing the skin for monitoring personal health condition is the basis of skin-contact electrophysiology. In the clinical practice the use of stiff and bulky pregelled or dry electrodes, in contrast to the soft body tissues, imposes severe restrictions to user comfort and mobility while limiting clinical applications. Here, in this work dry, unperceivable temporary tattoo electrodes are presented. Customized single or multielectrode arrays are readily fabricated by inkjet printing of conducting polymer onto commercial decal transfer paper, which allows for easy transfer on the user's skin. Conformal adhesion to the skin is provided thanks to their ultralow thickness (<1 µm). Tattoo electrode–skin contact impedance is characterized on short- (1 h) and long-term (48 h) and compared with standard pregelled and dry electrodes. The viability in electrophysiology is validated by surface electromyography and electrocardiography recordings on various locations on limbs and face. A novel concept of tattoo as perforable skin-contact electrode, through which hairs can grow, is demonstrated, thus permitting to envision very long-term recordings on areas with high hair density. The proposed materials and patterning strategy make this technology amenable for large-scale production of low-cost sensing devices
The kinetics of (18)F-FDG in lung cancer: compartmental models and voxel analysis
Background: The validation of the most appropriate compartmental model that describes the kinetics of a specific tracer within a specific tissue is mandatory before estimating quantitative parameters, since the behaviour of a tracer can be different among organs and diseases, as well as between primary tumours and metastases. The aims of our study were to assess which compartmental model better describes the kinetics of 18F-Fluorodeoxygluxose(18F-FDG) in primary lung cancers and in metastatic lymph nodes; to evaluate whether quantitative parameters, estimated using different innovative technologies, are different between lung cancers and lymph nodes; and to evaluate the intra-tumour inhomogeneity.
Results: Twenty-one patients (7 females; 71 ± 9.4 years) with histologically proved lung cancer, prospectively evaluated, underwent 18F-FDG PET-CT for staging. Spectral analysis iterative filter (SAIF) method was used to design the most appropriate compartmental model. Among the compartmental models arranged using the number of compartments suggested by SAIF results, the best one was selected according to Akaike information criterion (AIC). Quantitative analysis was performed at the voxel level. K1, Vb and Ki were estimated with three advanced methods: SAIF approach, Patlak analysis and the selected compartmental model. Pearson's correlation and non-parametric tests were used for statistics. SAIF showed three possible irreversible compartmental models: Tr-1R, Tr-2R and Tr-3R. According to well-known 18F-FDG physiology, the structure of the compartmental models was supposed to be catenary. AIC indicated the Sokoloff's compartmental model (3K) as the best one. Excellent correlation was found between Ki estimated by Patlak and by SAIF (R2 = 0.97, R2 = 0.94, at the global and the voxel level respectively), and between Ki estimated by 3K and by SAIF (R2 = 0.98, R2 = 0.95, at the global and the voxel level respectively). Using the 3K model, the lymph nodes showed higher mean and standard deviation of Vb than lung cancers (p < 0.0014, p < 0.0001 respectively) and higher standard deviation of K1 (p < 0.005).
Conclusions: One-tissue reversible plus one-tissue irreversible compartmental model better describes the kinetics of 18F-FDG in lung cancers, metastatic lymph nodes and normal lung tissues. Quantitative parameters, estimated at the voxel level applying different advanced approaches, show the inhomogeneity of neoplastic tissues. Differences in metabolic activity and in vascularization, highlighted among all cancers and within each individual cancer, confirm the wide variability in lung cancers and metastatic lymph nodes. These findings support the need of a personalization of therapeutic approaches
Efficacy of a vegetal mixture composed of Zingiber officinale, Echinacea purpurea, and Centella asiatica in a mouse model of neuroinflammation: In vivo and ex vivo analysis
Experimental evidence suggests that neuroinflammation is a key pathological event of many diseases affecting the nervous system. It has been well recognized that these devastating illnesses (e.g., Alzheimer's, Parkinson's, depression, and chronic pain) are multifactorial, involving many pathogenic mechanisms, reason why pharmacological treatments are unsatisfactory. The purpose of this study was to evaluate the efficacy of a vegetal mixture capable of offering a multiple approach required to manage the multifactoriality of neuroinflammation. A mixture composed of Zingiber officinale (150 mg kg(-1)), Echinacea purpurea (20 mg kg(-1)), and Centella asiatica (200 mg kg(-1)) was tested in a mouse model of systemic neuroinflammation induced by lipopolysaccharide (LPS, 1 mg kg(-1)). Repeated treatment with the vegetal mixture was able to completely counteract thermal and mechanical allodynia as reported by the Cold plate and von Frey tests, respectively, and to reduce the motor impairments as demonstrated by the Rota rod test. Moreover, the mixture was capable of neutralizing the memory loss in the Passive avoidance test and reducing depressive-like behavior in the Porsolt test, while no efficacy was shown in decreasing anhedonia as demonstrated by the Sucrose preference test. Finally, LPS stimulation caused a significant increase in the activation of glial cells, of the central complement proteins and of inflammatory cytokines in selected regions of the central nervous system (CNS), which were rebalanced in animals treated with the vegetal mixture. In conclusion, the vegetal mixture tested thwarted the plethora of symptoms evoked by LPS, thus being a potential candidate for future investigations in the context of neuroinflammation
- …
