1,594 research outputs found
A closer look at the X-ray transient XTE J1908+094: identification of two new near-infrared candidate counterparts
We had reported in Chaty, Mignani, Israel (2002) on the near-infrared (NIR)
identification of a possible counterpart to the black hole candidate XTE
J1908+094 obtained with the ESO/NTT. Here, we present new, follow-up, CFHT
adaptive optics observations of the XTE J1908+094 field, which resolved the
previously proposed counterpart in two objects separated by about 0.8".
Assuming that both objects are potential candidate counterparts, we derive that
the binary system is a low-mass system with a companion star which could be
either an intermediate/late type (A-K) main sequence star at a distance of 3-10
kpc, or a late-type (K) main sequence star at a distance of 1-3 kpc.
However, we show that the brighter of the two objects (J ~ 20.1, H ~ 18.7, K' ~
17.8) is more likely to be the real counterpart of the X-ray source. Its
position is more compatible with our astrometric solution, and colours and
magnitudes of the other object are not consistent with the lower limit of 3 kpc
derived independently from the peak bolometric flux of XTE J1908+094. Further
multi-wavelength observations of both candidate counterparts are crucial in
order to solve the pending identification.Comment: accepted for publication in MNRAS, 5 pages, 3 figure
Stochastic model for the dynamics of interacting Brownian particles
Using the scheme of mesoscopic nonequilibrium thermodynamics, we construct
the one- and two- particle Fokker-Planck equations for a system of interacting
Brownian particles. By means of these equations we derive the corresponding
balance equations. We obtain expressions for the heat flux and the pressure
tensor which enable one to describe the kinetic and potential energy
interchange of the particles with the heat bath. Through the momentum balance
we analyze in particular the diffusion regime to obtain the collective
diffusion coefficient in terms of the hydrodynamic and the effective forces
acting on the Brownian particles.Comment: latex fil
- …
