578 research outputs found
On the uniqueness of Gibbs states in the Pirogov-Sinai theory
We prove that, for low-temperature systems considered in the Pirogov-Sinai
theory, uniqueness in the class of translation-periodic Gibbs states implies
global uniqueness, i.e. the absence of any non-periodic Gibbs state. The
approach to this infinite volume state is exponentially fast.Comment: 12 pages, Plain TeX, to appear in Communications in Mathematical
Physic
Ordering and Demixing Transitions in Multicomponent Widom-Rowlinson Models
We use Monte Carlo techniques and analytical methods to study the phase
diagram of multicomponent Widom-Rowlinson models on a square lattice: there are
M species all with the same fugacity z and a nearest neighbor hard core
exclusion between unlike particles. Simulations show that for M between two and
six there is a direct transition from the gas phase at z < z_d (M) to a demixed
phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there
is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In
this phase, which is driven by entropy, particles, independent of species,
preferentially occupy one of the sublattices, i.e. spatial symmetry but not
particle symmetry is broken. The transition at z_d(M) appears to be first order
for M \geq 5 putting it in the Potts model universality class. For large M the
transition between the crystalline and demixed phase at z_d(M) can be proven to
be first order with z_d(M) \sim M-2 + 1/M + ..., while z_c(M) is argued to
behave as \mu_{cr}/M, with \mu_{cr} the value of the fugacity at which the one
component hard square lattice gas has a transition, and to be always of the
Ising type. Explicit calculations for the Bethe lattice with the coordination
number q=4 give results similar to those for the square lattice except that the
transition at z_d(M) becomes first order at M>2. This happens for all q,
consistent with the model being in the Potts universality class.Comment: 26 pages, 15 postscript figure
Rigorous Proof of a Liquid-Vapor Phase Transition in a Continuum Particle System
We consider particles in , interacting via attractive
pair and repulsive four-body potentials of the Kac type. Perturbing about mean
field theory, valid when the interaction range becomes infinite, we prove
rigorously the existence of a liquid-gas phase transition when the interaction
range is finite but long compared to the interparticle spacing.Comment: 11 pages, in ReVTeX, e-mail addresses: [email protected],
[email protected], [email protected]
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
Recommended from our members
The influence of the accessory genome on bacterial pathogen evolution
Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution
Ten-year neonatal hepatitis B vaccination program, the Netherlands, 1982-1992: Protective efficacy and long-term immunogenicity
Contrasted host specificity of gut and endosymbiont bacterial communities in alpine grasshoppers and crickets.
Bacteria colonize the body of macroorganisms to form associations ranging from parasitic to mutualistic. Endosymbiont and gut symbiont communities are distinct microbiomes whose compositions are influenced by host ecology and evolution. Although the composition of horizontally acquired symbiont communities can correlate to host species identity (i.e. harbor host specificity) and host phylogeny (i.e. harbor phylosymbiosis), we hypothesize that the microbiota structure of vertically inherited symbionts (e.g. endosymbionts like Wolbachia) is more strongly associated with the host species identity and phylogeny than horizontally acquired symbionts (e.g. most gut symbionts). Here, using 16S metabarcoding on 336 guts from 24 orthopteran species (grasshoppers and crickets) in the Alps, we observed that microbiota correlated to host species identity, i.e. hosts from the same species had more similar microbiota than hosts from different species. This effect was ~5 times stronger for endosymbionts than for putative gut symbionts. Although elevation correlated with microbiome composition, we did not detect phylosymbiosis for endosymbionts and putative gut symbionts: closely related host species did not harbor more similar microbiota than distantly related species. Our findings indicate that gut microbiota of studied orthopteran species is more correlated to host identity and habitat than to the host phylogeny. The higher host specificity in endosymbionts corroborates the idea that-everything else being equal-vertically transmitted microbes harbor stronger host specificity signal, but the absence of phylosymbiosis suggests that host specificity changes quickly on evolutionary time scales
- …
