1,102 research outputs found
ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: towards an understanding of dust processing
We present Infrared Space Observatory (ISO) spectra of fourteen isolated
Herbig Ae/Be (HAEBE) stars, to study the characteristics of their circumstellar
dust. These spectra show large star-to-star differences, in the emission
features of both carbon-rich and oxygen-rich dust grains. The IR spectra were
combined with photometric data ranging from the UV through the optical into the
sub-mm region. We defined two key groups, based upon the spectral shape of the
infrared region. The derived results can be summarized as follows: (1) the
continuum of the IR to sub-mm region of all stars can be reconstructed by the
sum of a power-law and a cool component, which can be represented by a black
body. Possible locations for these components are an optically thick,
geometrically thin disc (power-law component) and an optically thin flared
region (black body); (2) all stars have a substantial amount of cold dust
around them, independent of the amount of mid-IR excess they show; (3) also the
near-IR excess is unrelated to the mid-IR excess, indicating different
composition/location of the emitting material; (4) remarkably, some sources
lack the silicate bands; (5) apart from amorphous silicates, we find evidence
for crystalline silicates in several stars, some of which are new detections;
(6) PAH bands are present in at least 50% of our sample, and their appearance
is slightly different from PAHs in the ISM; (7) PAH bands are, with one
exception, not present in sources which only show a power-law continuum in the
IR; their presence is unrelated to the presence of the silicate bands; (8) the
dust in HAEBE stars shows strong evidence for coagulation; this dust processing
is unrelated to any of the central star properties (such as age, spectral type
and activity).Comment: 15 pages, accepted by A&
The absence of the 10 um silicate feature in the isolated Herbig Ae star HD 100453
We analyse the optical and IR spectra, as well as the spectral energy
distribution (UV to mm) of the candidate Herbig Ae star HD100453. This star is
particular, as it shows an energy distribution similar to that of other
isolated Herbig Ae/Be stars (HAEBEs), but unlike most of them, it does not have
a silicate emission feature at 10 um, as is shown in Meeus (2001). We confirm
the HAEBE nature of HD100453 through an analysis of its optical spectrum and
derived location in the H-R diagram. The IR spectrum of HD100453 is modelled by
an optically thin radiative transfer code, from which we derive constraints on
the composition, grain-size and temperature distribution of the circumstellar
dust. We show that it is both possible to explain the lack of the silicate
feature as (1) a grain-size effect - lack of small silicate grains, and (2) a
temperature effect - lack of small, hot silicates, as proposed by Dullemond
(2001), and discuss both possibilities.Comment: 9 pages, 7 figures; accepted by A&
Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs
At early stages of stellar evolution young stars show powerful jets and/or
outflows that interact with protoplanetary discs and their surroundings.
Despite the scarce knowledge about the interaction of jets and/or outflows with
discs, spectroscopic studies based on Herschel and ISO data suggests that gas
shocked by jets and/or outflows can be traced by far-IR (FIR) emission in
certain sources. We want to provide a consistent catalogue of selected atomic
([OI] and [CII]) and molecular (CO, OH, and HO) line fluxes observed in
the FIR, separate and characterize the contribution from the jet and the disc
to the observed line emission, and place the observations in an evolutionary
picture. The atomic and molecular FIR (60-190 ) line emission of
protoplanetary discs around 76 T Tauri stars located in Taurus are analysed.
The observations were carried out within the Herschel key programme Gas in
Protoplanetary Systems (GASPS). The spectra were obtained with the
Photodetector Array Camera and Spectrometer (PACS). The sample is first divided
in outflow and non-outflow sources according to literature tabulations. With
the aid of archival stellar/disc and jet/outflow tracers and model predictions
(PDRs and shocks), correlations are explored to constrain the physical
mechanisms behind the observed line emission. The much higher detection rate of
emission lines in outflow sources and the compatibility of line ratios with
shock model predictions supports the idea of a dominant contribution from the
jet/outflow to the line emission, in particular at earlier stages of the
stellar evolution as the brightness of FIR lines depends in large part on the
specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&
Экономическое обоснование сущности расходов предприятия
This study examined the development of adolescents' conflict frequency and conflict resolution with their best friends, and tested whether adolescents with different personality types differed in these developmental changes from early to middle adolescence. Dutch adolescents (N = 922, 468 boys; Mage = 12.4 years at first wave) annually filled in questionnaires for five consecutive years. Growth modelling revealed that, whereas adolescents' conflict frequency and hostile conflict resolution did not change, positive problem solving, withdrawal, and compliance during conflict with best friends increased from age 12 to 16 years. Adolescents with different personality types differed in the mean levels of conflict frequency and conflict resolution strategies. That is, resilients had less conflict with friends than undercontrollers and overcontrollers. During conflict, resilients used the least hostile conflict resolution and compliance, and employed the most positive problem solving. Undercontrollers adopted the least positive problem solving, and overcontrollers complied and withdrew the most. Using a person-centred approach, three developmental conflict resolution types were identified based on different constellations of the four conflict resolution strategies over time. Adolescents with different personality types had different distributions on the conflict resolution types
Modular Acquisition and Stimulation System for Timestamp-Driven Neuroscience Experiments
Dedicated systems are fundamental for neuroscience experimental protocols
that require timing determinism and synchronous stimuli generation. We
developed a data acquisition and stimuli generator system for neuroscience
research, optimized for recording timestamps from up to 6 spiking neurons and
entirely specified in a high-level Hardware Description Language (HDL). Despite
the logic complexity penalty of synthesizing from such a language, it was
possible to implement our design in a low-cost small reconfigurable device.
Under a modular framework, we explored two different memory arbitration schemes
for our system, evaluating both their logic element usage and resilience to
input activity bursts. One of them was designed with a decoupled and latency
insensitive approach, allowing for easier code reuse, while the other adopted a
centralized scheme, constructed specifically for our application. The usage of
a high-level HDL allowed straightforward and stepwise code modifications to
transform one architecture into the other. The achieved modularity is very
useful for rapidly prototyping novel electronic instrumentation systems
tailored to scientific research.Comment: Preprint submitted to ARC 2015. Extended: 16 pages, 10 figures. The
final publication is available at link.springer.co
High angular resolution imaging of the circumstellar material around intermediate mass (IM) stars
In this Paper we present high angular resolution imaging of 3
intermediate-mass (IM) stars using the Plateau de Bure Interferometer (PdBI).
In particular we present the chemical study we have carried out towards the IM
hot core NGC 7129--FIRS 2. This is the first chemical study in an IM hot core
and provides important hints to understand the dependence of the hot core
chemistry on the stellar luminosity. We also present our high angular
resolution (0.3") images of the borderline Class 0-Class I object IC1396 N.
These images trace the warm region of this IM protostar with unprecedent detail
(0.3"\sim200 AU at the distance of IC1396 N) and provide the first detection of
a cluster of IM hot cores. Finally, we present our interferometric continuum
and spectroscopic images of the disk around the Herbig Be star R Mon. We have
determined the kinematics and physical structure of the disk associated with
this B0 star. The low spectral index derived from the dust emission as well as
the flat geometry of the disk suggest a more rapid evolution of the disks
associated with massive stars. In the Discussion, we dare to propose a possible
evolutionary sequence for the warm circumstellar material around IM stars.Comment: 4 pages, 2 figures. Proceedings of the conference "Science with ALMA:
a new era for Astrophysics" hold in Madrid in November, 13-17, 200
X-ray emission from young brown dwarfs in the Orion Nebula Cluster
We use the sensitive X-ray data from the Chandra Orion Ultradeep Project
(COUP) to study the X-ray properties of 34 spectroscopically-identified brown
dwarfs with near-infrared spectral types between M6 and M9 in the core of the
Orion Nebula Cluster. Nine of the 34 objects are clearly detected as X-ray
sources. The apparently low detection rate is in many cases related to the
substantial extinction of these brown dwarfs; considering only the BDs with
mag, nearly half of the objects (7 out of 16) are detected in
X-rays. Our 10-day long X-ray lightcurves of these objects exhibit strong
variability, including numerous flares. While one of the objects was only
detected during a short flare, a statistical analysis of the lightcurves
provides evidence for continuous (`quiescent') emission in addition to flares
for all other objects. Of these, the M9 brown dwarf COUP 1255 = HC 212
is one of the coolest known objects with a clear detection of quiescent X-ray
emission. The X-ray properties (spectra, fractional X-ray luminosities, flare
rates) of these young brown dwarfs are similar to those of the low-mass stars
in the ONC, and thus there is no evidence for changes in the magnetic activity
around the stellar/substellar boundary, which lies at M6 for ONC
sources. Since the X-ray properties of the young brown dwarfs are also similar
to those of M6--M9 field stars, the key to the magnetic activity in very cool
objects seems to be the effective temperature, which determines the degree of
ionization in the atmosphere.Comment: accepted for ApJS, COUP special issu
DZ Cha: a bona fide photoevaporating disc
DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright
protoplanetary disc with evidence of inner disc clearing. Its narrow \Ha line
and infrared spectral energy distribution suggest that DZ Cha may be a
photoevaporating disc. We aim to analyse the DZ Cha star + disc system to
identify the mechanism driving the evolution of this object. We have analysed
three epochs of high resolution optical spectroscopy, photometry from the UV up
to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry
observations of DZ Cha. Combining our analysis with previous studies we find no
signatures of accretion in the \Ha line profile in nine epochs covering a
time baseline of years. The optical spectra are dominated by
chromospheric emission lines, but they also show emission from the forbidden
lines [SII] 4068 and [OI] 6300 that indicate a disc outflow. The
polarized images reveal a dust depleted cavity of au in radius and two
spiral-like features, and we derive a disc dust mass limit of
M_\mathrm{dust}
80 \MJup) companions are detected down to 0\farcs07 ( au,
projected). The negligible accretion rate, small cavity, and forbidden line
emission strongly suggests that DZ Cha is currently at the initial stages of
disc clearing by photoevaporation. At this point the inner disc has drained and
the inner wall of the truncated outer disc is directly exposed to the stellar
radiation. We argue that other mechanisms like planet formation or binarity
cannot explain the observed properties of DZ Cha. The scarcity of objects like
this one is in line with the dispersal timescale ( yr) predicted
by this theory. DZ Cha is therefore an ideal target to study the initial stages
of photoevaporation.Comment: A&A in press, language corrections include
An Analysis of the Environments of FU Orionis Objects with Herschel
We present Herschel-HIFI, SPIRE, and PACS 50-670 {\mu}m imaging and
spectroscopy of six FU Orionis-type objects and candidates (FU Orionis, V1735
Cyg, V1515 Cyg, V1057 Cyg, V1331 Cyg, and HBC 722), ranging in outburst date
from 1936-2010, from the "FOOSH" (FU Orionis Objects Surveyed with Herschel)
program, as well as ancillary results from Spitzer-IRS and the Caltech
Submillimeter Observatory. In their system properties (Lbol, Tbol, line
emission), we find that FUors are in a variety of evolutionary states.
Additionally, some FUors have features of both Class I and II sources: warm
continuum consistent with Class II sources, but rotational line emission
typical of Class I, far higher than Class II sources of similar
mass/luminosity. Combining several classification techniques, we find an
evolutionary sequence consistent with previous mid-IR indicators. We detect [O
I] in every source at luminosities consistent with Class 0/I protostars, much
greater than in Class II disks. We detect transitions of 13CO (J_up of 5 to 8)
around two sources (V1735 Cyg and HBC 722) but attribute them to nearby
protostars. Of the remaining sources, three (FU Ori, V1515 Cyg, and V1331 Cyg)
exhibit only low-lying CO, but one (V1057 Cyg) shows CO up to J = 23 - 22 and
evidence for H2O and OH emission, at strengths typical of protostars rather
than T Tauri stars. Rotational temperatures for "cool" CO components range from
20-81 K, for ~ 10^50 total CO molecules. We detect [C I] and [N II] primarily
as diffuse emission.Comment: 31 pages, 15 figures; accepted to Ap
Determining the forsterite abundance of the dust around Asymptotic Giant Branch stars
Aims. We present a diagnostic tool to determine the abundance of the
crystalline silicate forsterite in AGB stars surrounded by a thick shell of
silicate dust. Using six infrared spectra of high mass-loss oxygen rich AGB
stars we obtain the forsterite abundance of their dust shells.
Methods. We use a monte carlo radiative transfer code to calculate infrared
spectra of dust enshrouded AGB stars. We vary the dust composition, mass-loss
rate and outer radius. We focus on the strength of the 11.3 and the 33.6 \mu m
forsterite bands, that probe the most recent (11.3 \mu m) and older (33.6 \mu
m) mass-loss history of the star. Simple diagnostic diagrams are derived,
allowing direct comparison to observed band strengths.
Results. Our analysis shows that the 11.3 \mu m forsterite band is a robust
indicator for the forsterite abundance of the current mass-loss period for AGB
stars with an optically thick dust shell. The 33.6 \mu m band of forsterite is
sensitive to changes in the density and the geometry of the emitting dust
shell, and so a less robust indicator. Applying our method to six high
mass-loss rate AGB stars shows that AGB stars can have forsterite abundances of
12% by mass and higher, which is more than the previously found maximum
abundance of 5%.Comment: Accepted for publication in A&
- …
