79 research outputs found

    Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis

    Get PDF
    BACKGROUND: The germline BRCA2 mutation is associated with increased prostate cancer (PrCa) risk. We have assessed survival in young PrCa cases with a germline mutation in BRCA2 and investigated loss of heterozygosity at BRCA2 in their tumours. METHODS: Two cohorts were compared: one was a group with young-onset PrCa, tested for germline BRCA2 mutations (6 of 263 cases had a germline BRAC2 mutation), and the second was a validation set consisting of a clinical set from Manchester of known BRCA2 mutuation carriers (15 cases) with PrCa. Survival data were compared with a control series of patients in a single clinic as determined by Kaplan-Meier estimates. Loss of heterozygosity was tested for in the DNA of tumour tissue of the young-onset group by typing four microsatellite markers that flanked the BRCA2 gene, followed by sequencing. RESULTS: Median survival of all PrCa cases with a germline BRCA2 mutation was shorter at 4.8 years than was survival in controls at 8.5 years (P = 0.002). Loss of heterozygosity was found in the majority of tumours of BRCA2 mutation carriers. Multivariate analysis confirmed that the poorer survival of PrCa in BRCA2 mutation carriers is associated with the germline BRCA2 mutation per se. CONCLUSION: BRCA2 germline mutation is an independent prognostic factor for survival in PrCa. Such patients should not be managed with active surveillance as they have more aggressive disease. British Journal of Cancer (2010) 103, 918-924. doi:10.1038/sj.bjc.6605822 www.bjcancer.com Published online 24 August 2010 (C) 2010 Cancer Research U

    ELAC2 polymorphisms and prostate cancer risk: a meta-analysis based on 18 case–control studies

    Get PDF
    Polymorphisms in the elaC homolog-2 (ELAC2)/HPC2 gene have been hypothesized to alter the risk of prostate cancer. However, the results of the related published studies remained conflicting. We performed a meta-analysis of 18 studies evaluating the association between ELAC2 Ser217Leu and Ala541Thr polymorphisms and prostate cancer risk. Overall, ELAC2 Leu217 allele was associated with increased prostate cancer risk as compared with the Ser217 allele (odds ratio (OR)=1.13, 95% confidence interval (CI): 1.03–1.24, P=0.019 for heterogeneity), as well as in the heterozygote comparison (OR=1.21, 95% CI: 1.07–1.36, P=0.034 for heterogeneity) and the dominant genetic model (OR=1.20, 95% CI: 1.07–1.35, P=0.025 for heterogeneity). Furthermore, the ELAC2 Thr541 allele was associated with increased prostate cancer risk as compared with the Ala541 allele (OR=1.22, 95% CI: 1.00–0.48, P=0.131 for heterogeneity). In the stratified analyses for Ser217Leu polymorphism, there was significantly increased prostate cancer risk in Asian and Caucasian populations, and studies using sporadic and familial prostate cancer cases. Similar result was found in the Asian population in the stratified analyses for Ala541Thr polymorphism. This meta-analysis showed evidence that ELAC2 Ser217Leu and Ala541Thr polymorphisms were associated with prostate cancer risk, and might be low-penetrance susceptibility markers of prostate cancer

    Big Data, Big Decisions: The Coming

    No full text

    Numerical Simulation of Boundary Layer Flow over Suction Holes

    Full text link

    Morphological and molecular identification of fungi associated with South African apple core rot

    Get PDF
    CITATION: Basson, E., Meitz-Hopkins, J. C. & Lennox, C. L. 2018. Morphological and molecular identification of fungi associated with South African apple core rot. European Journal of Plant Pathology, 153:849-868, doi:10.1007/s10658-018-1601-x.The original publication is available at https://link.springer.comCore rot is a major contributor to postharvest losses in apples worldwide. Pathogens most commonly associated with the disease are Alternaria spp. and Penicillium spp. Although both genera show specific morphological characteristics, they can be difficult to identify to species level. In this study, Alternaria spp. (49) and Penicillium spp. isolates (97), associated with pre- and post-harvest apple core rot-symptoms and isolates from potential inoculum sources were identified using molecular methods. Initially, dry core rot causing Alternaria spp. were identified morphologically in an average of 70% of infected fruit pre-harvest and 32% postharvest. Furthermore, 78% of mouldy core rot causing pathogens were identified as Alternaria spp. preharvest and 40% postharvest. Wet core rot was associated with Penicillium spp. in 64% of cases preharvest and 36% postharvest. Species identity of a selection of samples was confirmed using the endopolygalacturonase (endo-PG) gene, the ITS region, and the anonymous genomic regions (OPA1–3, 2–1), which resulted in the identification of A. alternata, A. arborescens, A. dumosa, A. eureka and A. tenuissima. Penicillium species were identified through ITS sequencing and partial beta-tubulin polymerase chain reaction – random fragment length polymorphisms (PCR-RFLP) for the samples collected from wet core rot symptoms. Phylogenetic analyses separated the Alternaria spp. into five clades, including three separate clades for A. alternata, A. tenuissima and A. arborescens, respectively. This is the first report of A. eureka and P. polonicum as potential core rot pathogens. Phylogenetic analysis identified Penicillium ramulosum and P. expansum as the most commonly occurring species associated with WCR symptoms.https://link.springer.com/article/10.1007/s10658-018-1601-xPost prin

    Morphological and phylogenetic analyses of Pythium species in South Africa

    No full text
    The genus Pythium is important in agriculture, since it contains many plant pathogenic species, as well as species that can promote plant growth and some that have biocontrol potential. In South Africa, very little is known about the diversity of Pythium species within agricultural soil, irrigation and hydroponic systems. Therefore, the aim of the study was to characterise a selection of 85 Pythium isolates collected in South Africa from 1991 through to 2007. The isolates were characterised morphologically as well as through sequence and phylogenetic analyses of the internal transcribed spacer regions (ITS) and the 5.8S gene of the nuclear ribosomal DNA. Phylogenetic analyses showed that the isolates represented ten of the 11 published Pythium clades [Lévesque & De Cock, 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research 108: 1363-1383]. Characterisation of isolates in clade D and J suggested that the phylogenetic concept of Pythium acanthicum and Pythium perplexum respectively, needs further investigation in order to enable reliable species identification within these clades. Our phylogenetic analyses of Pythium species in clade B also showed that species with globose sporangia group basal within this clade, and are not dispersed within the clade as previously reported. The 85 South African isolates represented 34 known species, of which 20 species have not been reported previously in South Africa. Additionally, three isolates (PPRI 8428, 8300 and 8418) were identified that may each represent putative new species, Pythium sp. WJB-1 to WJB-3. © 2009 The British Mycological Society.Articl
    corecore