18 research outputs found
Microarray-Based Transcriptomic Analysis of Differences between Long-Term Gregarious and Solitarious Desert Locusts
Desert locusts (Schistocerca gregaria) show an extreme form of phenotypic plasticity and can transform between a cryptic solitarious phase and a swarming gregarious phase. The two phases differ extensively in behavior, morphology and physiology but very little is known about the molecular basis of these differences. We used our recently generated Expressed Sequence Tag (EST) database derived from S. gregaria central nervous system (CNS) to design oligonucleotide microarrays and compare the expression of thousands of genes in the CNS of long-term gregarious and solitarious adult desert locusts. This identified 214 differentially expressed genes, of which 40% have been annotated to date. These include genes encoding proteins that are associated with CNS development and modeling, sensory perception, stress response and resistance, and fundamental cellular processes. Our microarray analysis has identified genes whose altered expression may enable locusts of either phase to deal with the different challenges they face. Genes for heat shock proteins and proteins which confer protection from infection were upregulated in gregarious locusts, which may allow them to respond to acute physiological challenges. By contrast the longer-lived solitarious locusts appear to be more strongly protected from the slowly accumulating effects of ageing by an upregulation of genes related to anti-oxidant systems, detoxification and anabolic renewal. Gregarious locusts also had a greater abundance of transcripts for proteins involved in sensory processing and in nervous system development and plasticity. Gregarious locusts live in a more complex sensory environment than solitarious locusts and may require a greater turnover of proteins involved in sensory transduction, and possibly greater neuronal plasticity
Structural and functional characterization of the GalNAc/Gal-specific lectin from the phytopathogenic ascomycete Sclerotinia sclerotiorum (Lib.) de Bary
Immunoglobulin G particles manufacturing by spray drying process for pressurised metered dose inhaler formulations
International audienc
A molecular basis for the endo-beta 1,3-glucanase activity of the thaumatin-like proteins from edible fruits
A
Biochemical, molecular and structural analysis of multiple thaumatin-like proteins from the elderberry tree (Sambucus nigra L.)
Thaumatin-like proteins (TLPs) were isolated and characterized from fruits and leaves of elderberry (Sambucus nigra) and their corresponding genes cloned. In addition, the developmental regulation and induction of the different TLPs was followed in some detail. Ripening berries accumulated a fruit-specific TLP during the final stages of maturation. This fruit-specific TLP had no antifungal activity and was devoid of beta-glucanase activity. Leaves constitutively expressed a TLP that closely resembled the fruit-specific homologue. Treatment with jasmonate methyl ester induced two additional TLPs in leaves but did not induce or enhance the expression of TLPs in immature berries. In contrast to jasmonate methyl ester, both ethephon and garlic extract induced the expression of a TLP in unripe berries that normally do not express any TLP. Sequence analysis and molecular modeling indicated that all elderberry thaumatin-like proteins share a high sequence similarity with group-5 pathogenesis-related proteins. However, the proteins encoded by the different sequences differed from each other in isoeleetric point and the distribution of the charges on the surface of the molecule
Resolution of the structure of the allergenic and antifungal banana fruit thaumatin-like protein at 1.7-angstrom
International audienceThe structure of a thaumatin-like protein from banana (Musa acuminata) fruit, an allergen with antifungal properties, was solved at 1.7-Å-resolution, by X-ray crystallography. Though the banana protein exhibits a very similar overall fold as thaumatin it markedly differs from the sweet-tasting protein by the presence of a surface exposed electronegative cleft. Due to the presence of this electronegative cleft, the banana thaumatin-like protein (Ban-TLP) acquires a strong (local) electronegative character that eventually explains the observed antifungal activity. Our structural analysis also revealed the presence of conserved residues of exposed epitopic determinants that are presumably responsible for the allergenic properties of banana fruit towards susceptible individuals, and provided evidence that the Ban-TLP shares some structurally highly conserved IgE-binding epitopes with thaumatin-like proteins from fruits or pollen from other plants. In addition, some overlap was detected between the predicted IgE-binding epitopes of the Ban-TLP and IgE-binding epitopes previously identified in the mountain cedar Jun a 3 TLP aeroallergen. The presence of these common epitopes offers a molecular basis for the cross-reactivity between aeroallergens and fruit allergens
Purification and structural analysis of an abundant thaumatin-like protein from ripe banana fruit
The pulp of ripe bananas (Musa acuminata) contains an abundant thaumatin-like protein (TLP). Characterization of the protein and molecular cloning of the corresponding gene from banana demonstrated that the native protein consists of a single polypeptide chain of 200 amino acid residues. Molecular modelling further revealed that the banana thaumatin-like protein (Ban-TLP) adopts an overall fold similar to that of thaumatin and thaumatin-like PR-5 proteins. Although the banana protein exhibits an electrostatically polarized surface, which is believed to be essential for the antifungal properties of TLPs, it is apparently devoid of antifungal activity towards pathogenic fungi. It exhibits a low but detectable in vitro endo-beta-1,3-glucanase (EC 3.2.1.x) activity. As well as being present in fruits, Ban-TLP also occurs in root tips where its accumulation is enhanced by methyl jasmonate treatment of plants. Pulp of plantains (Musa acuminata) also contains a very similar TLP, which is even more abundant than its banana homologue. Our results demonstrate for the first time that fruit-specific (abundant) TLPs are not confined to dicots but occur also in fruits of monocot species. The possible role of the apparent widespread accumulation of fruit-specific TLPs is discussed.status: publishe
