735 research outputs found
Design of a variable stiffness soft dexterous gripper
This article presents the design of a variable stiffness, soft, three fingered dexterous gripper. The gripper uses two designs of McKibben muscles. Extensor muscles which increase in length when pressurised are used to form the fingers of the gripper. Contractor muscles which decrease in length when pressurised are then used to apply forces to the fingers via tendons which cause flexion and extension of the fingers. The two types of muscles are arranged to act antagonistically and this means that by raising the pressure in all of the pneumatic muscles the stiffness of the system can be increased without a resulting change in finger position. The article presents the design of the gripper, some basic kinematics to describe its function and then experimental results demonstrating the ability to adjust the bending stiffness of the gripper’s fingers. It has been demonstrated that the finger’s bending stiffness can be increased by over 150%. The article concludes by demonstrating that the fingers can be closed loop position controlled and are able to track step and sinusoidal inputs
Acquired factor V inhibitor in a context of sepsis and disseminated intravascular coagulation
International audienc
Eikonal analysis of Coulomb distortion in quasi-elastic electron scattering
An eikonal expansion is used to provide systematic corrections to the eikonal
approximation through order , where is the wave number. Electron
wave functions are obtained for the Dirac equation with a Coulomb potential.
They are used to investigate distorted-wave matrix elements for quasi-elastic
electron scattering from a nucleus. A form of effective-momentum approximation
is obtained using trajectory-dependent eikonal phases and focusing factors.
Fixing the Coulomb distortion effects at the center of the nucleus, the
often-used ema approximation is recovered. Comparisons of these approximations
are made with full calculations using the electron eikonal wave functions. The
ema results are found to agree well with the full calculations.Comment: 12 pages, 6 Postscript figure
Transversity and Transverse Spin in Nucleon Structure through SIDIS at Jefferson Lab
The JLab 12 GeV upgrade with a proposed solenoid detector and the CLAS12
detector can provide the granularity and three-dimensional kinematic coverage
in longitudinal and transverse momentum, , with to precisely measure the leading twist
chiral-odd and -odd quark distribution and fragmentation functions in SIDIS.
The large experimental reach of these detectors with a 12 GeV CEBAF at JLab
makes it {\em ideal} to obtain precise data on the {\em valence-dominated}
transversity distribution function and to access the tensor charge.Comment: 7 Pages, 2 figures. Summary of the working group on Transversity and
Transverse Spin Physics, from the workshop, "Inclusive and Semi-Inclusive
Spin Physics with High Luminosity and LargeAcceptance at 11 GeV", Thomas
Jefferson National Accelerator Facility (JLAB), December 13-14, 2006,
Jefferson Lab, Newport News, VA USA. Serves as input for the Nuclear Physics
Long Range Plan on QCD and Hadron Physic
Functional approach to the electromagnetic response function: the Longitudinal Channel
In this paper we address the (charge) longitudinal electromagnetic response
for a homogeneous system of nucleons interacting via meson exchanges in the
functional framework. This approach warrants consistency if the calculation is
carried on order-by-order in the mesonic loop expansion with RPA-dressed
mesonic propagators. At the 1-loop order and considering pion, rho and omega
exchanges we obtain a quenching of the response, in line with the experimental
results.Comment: RevTeX, 18 figures available upon request - to be published in
Physical Review
Quasielastic 12C(e,e'p) Reaction at High Momentum Transfer
We measured the 12C(e,e'p) cross section as a function of missing energy in
parallel kinematics for (q,w) = (970 MeV/c, 330 MeV) and (990 MeV/c, 475 MeV).
At w=475 MeV, at the maximum of the quasielastic peak, there is a large
continuum (E_m > 50 MeV) cross section extending out to the deepest missing
energy measured, amounting to almost 50% of the measured cross section. The
ratio of data to DWIA calculation is 0.4 for both the p- and s-shells. At w=330
MeV, well below the maximum of the quasielastic peak, the continuum cross
section is much smaller and the ratio of data to DWIA calculation is 0.85 for
the p-shell and 1.0 for the s-shell. We infer that one or more mechanisms that
increase with transform some of the single-nucleon-knockout into
multinucleon knockout, decreasing the valence knockout cross section and
increasing the continuum cross section.Comment: 14 pages, 7 figures, Revtex (multicol, prc and aps styles), to appear
in Phys Rev
The Role of Final State Interactions in Quasielastic Fe Reactions at large
A relativistic finite nucleus calculation using a Dirac optical potential is
used to investigate the importance of final state interactions [FSI] at large
momentum transfers in inclusive quasielastic electronuclear reactions. The
optical potential is derived from first-order multiple scattering theory and
then is used to calculate the FSI in a nonspectral Green's function doorway
approach. At intermediate momentum transfers excellent predictions of the
quasielastic Fe experimental data for the longitudinal response
function are obtained. In comparisons with recent measurements at ~GeV/c the theoretical calculations of give good agreement for
the quasielastic peak shape and amplitude, but place the position of the peak
at an energy transfer of about ~MeV higher than the data.Comment: 13 pages typeset using revtex 3.0 with 6 postscript figures in
accompanying uuencoded file; submitted to Phys. Rev.
Causality in relativistic many body theory
The stability of the nuclear matter system with respect to density
fluctuations is examined exploring in detail the pole structure of the
electro-nuclear response functions. Making extensive use of the method of
dispersion integrals we calculate the full polarization propagator not only for
real energies in the spacelike and timelike regime but also in the whole
complex energy plane. The latter proved to be necessary in order to identify
unphysical causality violating poles which are the consequence of a neglection
of vacuum polarization. On the contrary it is shown that Dirac sea effects
stabilize the nuclear matter system shifting the unphysical pole from the upper
energy plane back to the real axis. The exchange of strength between these real
timelike collective excitations and the spacelike energy regime is shown to
lead to a reduction of the quasielastic peak as it is seen in electron
scattering experiments. Neglecting vacuum polarization one also obtains a
reduction of the quasielastic peak but in this case the strength is partly
shifted to the causality violating pole mentioned above which consequently
cannot be considered as a physical reliable result. Our investigation of the
response function in the energy region above the threshold of nucleon
anti-nucleon production leads to another remarkable result. Treating the
nucleons as point-like Dirac particles we show that for any isospin independent
NN-interaction RPA-correlations provide a reduction of the production amplitude
for -pairs by a factor 2.Comment: 19 pages Latex including 12 postscript figure
- …
