935 research outputs found
Recommended from our members
A Technique for Determining the Carrier Phase Differences between Independent GPS Receivers during Scintillation
A method for recovering the carrier phase differences between
pairs of independent GPS receivers has been developed
and demonstrated in truth-model simulations. This
effort is in support of a project that intends to image the disturbed
ionosphere with diffraction tomography techniques
using GPS measurements from large arrays of receivers.
Carrier phase differential GPS techniques, common in surveying
and relative navigation, are employed to determine
the phase relationships between the receivers in the imaging array. Strategies for estimating the absolute carrier phase
disturbances at each receiver are discussed. Simulation results
demonstrate that the system can rapidly detect the onset
of scintillation, identify one non-scintillating reference
signal, and recover the carrier phase differences accurate to
0.1 cycles.Aerospace Engineering and Engineering Mechanic
Local structure of In_(0.5)Ga_(0.5)As from joint high-resolution and differential pair distribution function analysis
High resolution total and indium differential atomic pair distribution
functions (PDFs) for In_(0.5)Ga_(0.5)As alloys have been obtained by high
energy and anomalous x-ray diffraction experiments, respectively. The first
peak in the total PDF is resolved as a doublet due to the presence of two
distinct bond lengths, In-As and Ga-As. The In differential PDF, which involves
only atomic pairs containing In, yields chemical specific information and helps
ease the structure data interpretation. Both PDFs have been fit with structure
models and the way in that the underlying cubic zinc-blende lattice of
In_(0.5)Ga_(0.5)As semiconductor alloy distorts locally to accommodate the
distinct In-As and Ga-As bond lengths present has been quantified.Comment: 9 pages, 7 figur
Quantum-Hall activation gaps in graphene
We have measured the quantum-Hall activation gaps in graphene at filling
factors and for magnetic fields up to 32 T and temperatures
from 4 K to 300 K. The gap can be described by thermal excitation to
broadened Landau levels with a width of 400 K. In contrast, the gap measured at
is strongly temperature and field dependent and approaches the expected
value for sharp Landau levels for fields T and temperatures
K. We explain this surprising behavior by a narrowing of the lowest Landau
level.Comment: 4 pages, 4 figures, updated version after review, accepted for PR
Belimumab : a technological advance for systemic lupus erythematosus patients? Report of a systematic review and meta-analysis
Objectives: To undertake a systematic review and meta-analysis to investigate clinical effectiveness of belimumab for patients with systemic lupus erythematosus (SLE) and antinuclear and/or anti-double-stranded DNA (dsDNA) autoantibodies.
Methods: We searched eight electronic databases and reference lists for randomised controlled trials (RCTs) of belimumab against placebo or best supportive care. Quality assessment and random effects meta-analysis were undertaken.
Design: A meta-analysis of RCTs.
Participants: 2133 SLE patients.
Primary and secondary outcome measures: SLE Responder Index (SRI) at week 52.
Results: Three double-blind placebo-controlled RCTs (L02, BLISS-52 BLISS-76) investigated 2133 SLE patients. BLISS-52 and BLISS-76 trials recruited patients with antinuclear and/or anti-dsDNA autoantibodies and demonstrated belimumab effectiveness for the SRI at week 52. Ethnicity and geographical location of participants varied considerably between BLISS trials. Although tests for statistical heterogeneity were negative, BLISS-52 results were systematically more favourable for all measured outcomes. Meta-analysis of pooled 52-week SRI BLISS results showed benefit for belimumab (OR 1.63, 95% CI 1.27 to 2.09). By week 76, the primary SRI outcome in BLISS-76 was not statistically significant (OR 1.31, 95% CI 0.919 to 1.855)
Bilayer Button Graft for Endoscopic Repair of High-Flow Cranial Base Defects
Closure of dural defects in trans-nasal, extended, endoscopic techniques remains a challenge, and published cerebrospinal fluid (CSF) leak rates are higher than rates for trans-cranial approaches. Development of a technique that used a vascularized, nasoseptal flap (NSF) significantly reduced the rate of CSF leak, and several groups have developed ways to buttress the NSF. A closure technique developed at our institution uses a bilayer “button” of fascia lata. The initial series of twenty patients repaired with this method from 2007 to July 1, 2009 were presented, with a CSF leak rate of 10% (Luginbuhl et al 2010)
Local structure study of In_xGa_(1-x)As semiconductor alloys using High Energy Synchrotron X-ray Diffraction
Nearest and higher neighbor distances as well as bond length distributions
(static and thermal) of the In_xGa_(1-x)As (0<x<1) semiconductor alloys have
been obtained from high real-space resolution atomic pair distribution
functions (PDFs). Using this structural information, we modeled the local
atomic displacements in In_xGa_(1-x)As alloys. From a supercell model based on
the Kirkwood potential, we obtained 3-D As and (In,Ga) ensemble averaged
probability distributions. This clearly shows that As atom displacements are
highly directional and can be represented as a combination of and
displacements. Examination of the Kirkwood model indicates that the standard
deviation (sigma) of the static disorder on the (In,Ga) sublattice is around
60% of the value on the As sublattice and the (In,Ga) atomic displacements are
much more isotropic than those on the As sublattice. The single crystal diffuse
scattering calculated from the Kirkwood model shows that atomic displacements
are most strongly correlated along directions.Comment: 10 pages, 12 figure
Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout
The enormous stiffness and low density of graphene make it an ideal material
for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and
electrical readout of monolayer graphene resonators, and test their response to
changes in mass and temperature. The devices show resonances in the MHz range.
The strong dependence of the resonant frequency on applied gate voltage can be
fit to a membrane model, which yields the mass density and built-in strain.
Upon removal and addition of mass, we observe changes in both the density and
the strain, indicating that adsorbates impart tension to the graphene. Upon
cooling, the frequency increases; the shift rate can be used to measure the
unusual negative thermal expansion coefficient of graphene. The quality factor
increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing
many of the basic attributes of monolayer graphene resonators, these studies
lay the groundwork for applications, including high-sensitivity mass detectors
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
The micromachining technology that emerged in the late 1980s can provide micron-sized sensors and actuators. These micro transducers are able to be integrated with signal conditioning and processing circuitry to form micro-electro-mechanical-systems (MEMS) that can perform real-time distributed control. This capability opens up a new territory for flow control research. On the other hand, surface effects dominate the fluid flowing through these miniature mechanical devices because of the large surface-to-volume ratio in micron-scale configurations. We need to reexamine the surface forces in the momentum equation. Owing to their smallness, gas flows experience large Knudsen numbers, and therefore boundary conditions need to be modified. Besides being an enabling technology, MEMS also provide many challenges for fundamental flow-science research
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy
The thermal expansion coefficient (TEC) of single-layer graphene is estimated
with temperature-dependent Raman spectroscopy in the temperature range between
200 and 400 K. It is found to be strongly dependent on temperature but remains
negative in the whole temperature range, with a room temperature value of
-8.0x10^{-6} K^{-1}. The strain caused by the TEC mismatch between graphene and
the substrate plays a crucial role in determining the physical properties of
graphene, and hence its effect must be accounted for in the interpretation of
experimental data taken at cryogenic or elevated temperatures.Comment: 17 pagese, 3 figures, and supporting information (4 pages, 3
figures); Nano Letters, 201
- …
