200 research outputs found

    Relaxation time for the temperature in a dilute binary mixture from classical kinetic theory

    Full text link
    The system of our interest is a dilute binary mixture, in which we consider that the species have different temperatures as an initial condition. To study their time evolution, we use the full version of the Boltzmann equation, under the hypothesis of partial local equilibrium for both species. Neither a diffusion force nor mass diffusion appears in the system. We also estimate the time in which the temperatures of the components reach the full local equilibrium. In solving the Boltzmann equation, we imposed no assumptions on the collision term. We work out its solution by using the well known Chapman-Enskog method to first order in the gradients. The time in which the temperatures relax is obtained following Landau's original idea. The result is that the relaxation time for the temperatures is much smaller than the characteristic hydrodynamical times but greater than a collisional time. The main conclusion is that there is no need to study binary mixtures with different temperatures when hydrodynamical properties are sought

    On the role of the chaotic velocity in relativistic kinetic theory

    Full text link
    In this paper we revisit the concept of chaotic velocity within the context of relativistic kinetic theory. Its importance as the key ingredient which allows to clearly distinguish convective and dissipative effects is discussed to some detail. Also, by addressing the case of the two component mixture, the relevance of the barycentric comoving frame is established and thus the convenience for the introduction of peculiar velocities for each species. The fact that the decomposition of molecular velocity in systematic and peculiar components does not alter the covariance of the theory is emphasized. Moreover, we show that within an equivalent decomposition into space-like and time-like tensors, based on a generalization of the relative velocity concept, the Lorentz factor for the chaotic velocity can be expressed explicitly as an invariant quantity. This idea, based on Ellis' theorem, allows to foresee a natural generalization to the general relativistic case.Comment: 12 pages, 2 figure

    Entropy Production in Relativistic Binary Mixtures

    Full text link
    In this paper we calculate the entropy production of a relativistic binary mixture of inert dilute gases using kinetic theory. For this purpose we use the covariant form of Boltzmann's equation which, when suitably transformed, yields a formal expression for such quantity. Its physical meaning is extracted when the distribution function is expanded in the gradients using the well-known Chapman-Enskog method. Retaining the terms to first order, consistently with Linear Irreversible Thermodynamics we show that indeed, the entropy production can be expressed as a bilinear form of products between the fluxes and their corresponding forces. The implications of this result are thoroughly discussed

    On the validity of the Onsager relations in relativistic binary mixtures

    Full text link
    In this work we study the properties of a relativistic mixture of two non-reacting dilute species in thermal local equilibrium. Following the conventional ideas in kinetic theory, we use the concept of chaotic velocity. In particular, we address the nature of the density, or pressure gradient term that arises in the solution of the linearized Boltzmann equation in this context. Such effect, also present for the single component problem, has so far not been analyzed from the point of view of the Onsager resciprocity relations. In order to address this matter, we propose two alternatives for the Onsagerian matrix which comply with the corresponding reciprocity relations and also show that, as in the non-relativistic case, the chemical potential is not an adequate thermodynamic force. The implications of both representations are briefly analyzed

    Estimating Nuisance Parameters in Inverse Problems

    Full text link
    Many inverse problems include nuisance parameters which, while not of direct interest, are required to recover primary parameters. Structure present in these problems allows efficient optimization strategies - a well known example is variable projection, where nonlinear least squares problems which are linear in some parameters can be very efficiently optimized. In this paper, we extend the idea of projecting out a subset over the variables to a broad class of maximum likelihood (ML) and maximum a posteriori likelihood (MAP) problems with nuisance parameters, such as variance or degrees of freedom. As a result, we are able to incorporate nuisance parameter estimation into large-scale constrained and unconstrained inverse problem formulations. We apply the approach to a variety of problems, including estimation of unknown variance parameters in the Gaussian model, degree of freedom (d.o.f.) parameter estimation in the context of robust inverse problems, automatic calibration, and optimal experimental design. Using numerical examples, we demonstrate improvement in recovery of primary parameters for several large- scale inverse problems. The proposed approach is compatible with a wide variety of algorithms and formulations, and its implementation requires only minor modifications to existing algorithms.Comment: 16 pages, 5 figure

    Near-real-time damage estimation for buildings based on strong-motion recordings: An application to target areas in northeastern italy

    Get PDF
    The rapid estimation of expected impacts in case of an earthquake is extremely important for emergency managers and first responders. Current near-real-time damage assessment methods rely on ground-motion estimates and exposure or fragility datasets, in some cases integrating the shaking recorded at the site (e.g., from strong-motion monitoring networks). We propose a method that estimates the expected damages on buildings based on strong-motion recordings of a seismic event. The damage assessment is based on themaximumdrift (interstory) or the displacement, which is estimated by considering in a first approximation the behavior of a specific building typology as a single-degree-offreedom oscillator. The oscillator is characterized based on the analysis of the building stock and a large number of ambient vibration measurements performed in buildings. A specific damage state occurs when the interstory drift or displacement limits available in the literature for the specific building typology are exceeded. The method, here applied to a case study in northeastern Italy, can be applied to other seismic areas worldwide to provide quick, first-level estimates of expected damage

    Correction to: Association Between School Bullying, Suicidal Ideation, and Eating Disorders Among School-Aged Children from Antioquia, Colombia

    Get PDF
    Correction to "Association Between School Bullying, Suicidal Ideation, and Eating Disorders Among School-Aged Children from Antioquia, Colombia
    corecore