796 research outputs found

    Computing a Knot Invariant as a Constraint Satisfaction Problem

    Full text link
    We point out the connection between mathematical knot theory and spin glass/search problem. In particular, we present a statistical mechanical formulation of the problem of computing a knot invariant; p-colorability problem, which provides an algorithm to find the solution. The method also allows one to get some deeper insight into the structural complexity of knots, which is expected to be related with the landscape structure of constraint satisfaction problem.Comment: 6 pages, 3 figures, submitted to short note in Journal of Physical Society of Japa

    Mutual optical injection in coupled DBR laser pairs

    Get PDF
    We report an experimental study of nonlinear effects, characteristic of mutual optical coupling, in an ultra-short coupling regime observed in a distributed Bragg reflector laser pair fabricated on the same chip. Optical feedback is amplified via a double pass through a common onchip optical amplifier, which introduces further nonlinear phenomena. Optical coupling has been introduced via back reflection from a cleaveended fibre. The coupling may be varied in strength by varying the distance of the fibre from the output of the chip, without significantly affecting the coupling time. © 2008 Optical. Society of America

    Replicated Bethe Free Energy: A Variational Principle behind Survey Propagation

    Full text link
    A scheme to provide various mean-field-type approximation algorithms is presented by employing the Bethe free energy formalism to a family of replicated systems in conjunction with analytical continuation with respect to the number of replicas. In the scheme, survey propagation (SP), which is an efficient algorithm developed recently for analyzing the microscopic properties of glassy states for a fixed sample of disordered systems, can be reproduced by assuming the simplest replica symmetry on stationary points of the replicated Bethe free energy. Belief propagation and generalized SP can also be offered in the identical framework under assumptions of the highest and broken replica symmetries, respectively.Comment: appeared in Journal of the Physical Society of Japan 74, 2133-2136 (2005

    Near-field heat transfer in a scanning thermal microscope

    Full text link
    We present measurements of the near-field heat transfer between the tip of a thermal profiler and planar material surfaces under ultrahigh vacuum conditions. For tip-sample distances below 10-8 m our results differ markedly from the prediction of fluctuating electrodynamics. We argue that these differences are due to the existence of a material-dependent small length scale below which the macroscopic description of the dielectric properties fails, and discuss a corresponding model which yields fair agreement with the available data. These results are of importance for the quantitative interpretation of signals obtained by scanning thermal microscopes capable of detecting local temperature variations on surfaces

    Zero temperature solutions of the Edwards-Anderson model in random Husimi Lattices

    Full text link
    We solve the Edwards-Anderson model (EA) in different Husimi lattices. We show that, at T=0, the structure of the solution space depends on the parity of the loop sizes. Husimi lattices with odd loop sizes have always a trivial paramagnetic solution stable under 1RSB perturbations while, in Husimi lattices with even loop sizes, this solution is absent. The range of stability under 1RSB perturbations of this and other RS solutions is computed analytically (when possible) or numerically. We compute the free-energy, the complexity and the ground state energy of different Husimi lattices at the level of the 1RSB approximation. We also show, when the fraction of ferromagnetic couplings increases, the existence, first, of a discontinuous transition from a paramagnetic to a spin glass phase and latter of a continuous transition from a spin glass to a ferromagnetic phase.Comment: 20 pages, 10 figures (v3: Corrected analysis of transitions. Appendix proof fixed

    Dynamics of systems with isotropic competing interactions in an external field: a Langevin approach

    Full text link
    We study the Langevin dynamics of a ferromagnetic Ginzburg-Landau Hamiltonian with a competing long-range repulsive term in the presence of an external magnetic field. The model is analytically solved within the self consistent Hartree approximation for two different initial conditions: disordered or zero field cooled (ZFC), and fully magnetized or field cooled (FC). To test the predictions of the approximation we develop a suitable numerical scheme to ensure the isotropic nature of the interactions. Both the analytical approach and the numerical simulations of two-dimensional finite systems confirm a simple aging scenario at zero temperature and zero field. At zero temperature a critical field hch_c is found below which the initial conditions are relevant for the long time dynamics of the system. For h<hch < h_c a logarithmic growth of modulated domains is found in the numerical simulations but this behavior is not captured by the analytical approach which predicts a t1/2t^1/2 growth law at T=0T = 0

    Learning to coordinate in a complex and non-stationary world

    Full text link
    We study analytically and by computer simulations a complex system of adaptive agents with finite memory. Borrowing the framework of the Minority Game and using the replica formalism we show the existence of an equilibrium phase transition as a function of the ratio between the memory λ\lambda and the learning rates Γ\Gamma of the agents. We show that, starting from a random configuration, a dynamic phase transition also exists, which prevents the system from reaching any Nash equilibria. Furthermore, in a non-stationary environment, we show by numerical simulations that agents with infinite memory play worst than others with less memory and that the dynamic transition naturally arises independently from the initial conditions.Comment: 4 pages, 3 figure

    Replica Cluster Variational Method: the Replica Symmetric solution for the 2D random bond Ising model

    Full text link
    We present and solve the Replica Symmetric equations in the context of the Replica Cluster Variational Method for the 2D random bond Ising model (including the 2D Edwards-Anderson spin glass model). First we solve a linearized version of these equations to obtain the phase diagrams of the model on the square and triangular lattices. In both cases the spin-glass transition temperatures and the tricritical point estimations improve largely over the Bethe predictions. Moreover, we show that this phase diagram is consistent with the behavior of inference algorithms on single instances of the problem. Finally, we present a method to consistently find approximate solutions to the equations in the glassy phase. The method is applied to the triangular lattice down to T=0, also in the presence of an external field.Comment: 22 pages, 11 figure

    Rigorous Inequalities between Length and Time Scales in Glassy Systems

    Full text link
    Glassy systems are characterized by an extremely sluggish dynamics without any simple sign of long range order. It is a debated question whether a correct description of such phenomenon requires the emergence of a large correlation length. We prove rigorous bounds between length and time scales implying the growth of a properly defined length when the relaxation time increases. Our results are valid in a rather general setting, which covers finite-dimensional and mean field systems. As an illustration, we discuss the Glauber (heat bath) dynamics of p-spin glass models on random regular graphs. We present the first proof that a model of this type undergoes a purely dynamical phase transition not accompanied by any thermodynamic singularity.Comment: 24 pages, 3 figures; published versio
    corecore